GRADUATE SEMINAR

Mahsa N. Shirazi

A review on the character table of the perfect matching association scheme

PhD Candidate supervised by
Prof. Shaun Fallat and Prof. Karen Meagher

Monday, February 1, 2021
13:30
Zoom

Abstract

A Perfect matching in a graph on $2 k$ vertices is a set of edges that covers each vertex exactly once. Union of two perfect matchings gives us a set of even cycles. The shape of this set is an integer partition of $2 k$; say λ. For any such λ, define matrix A_{λ} in which rows and columns are indexed by the perfect matchings of the complete graph $K_{2 k}$, and the entry (m, n) is 1 if the union of the perfect matchings m and n gives us the even partition λ, and 0 otherwise. The set $\mathcal{A}=\left\{A_{\lambda} \mid \lambda \vdash 2 k\right\}$ forms a symmetric association scheme which is known as perfect matching association scheme.

Finding the complete character table of this scheme for $2 k \geq 40$ is still an unsolved problem. In his 1994 paper, Muzychuk studied the eigenvalues of this association scheme and he only found the eigenvalues up to $2 k=10$. More recently in 2018, Srinivasan presented a recursive algorithm to find the character tables up to $2 k=40$. In this talk I will review Srinivasan's work, also I will present the progress I have made in determining a portion of the character table for all values $k \geq 6$. Such a result would give the size and structure of the largest set of 2-intersecting perfect matchings.

