GRADUATE SEMINAR

Roqayia Shalabi

Schurian Association Schemes For Parabolic Subgroups of Coxeter Groups

PhD Student supervised by Allen Herman

March 28, 2022 3:30 PM via Zoom

Abstract:

Let *G* be a group, *H* be a subgroup of *G*, and $G/\!\!/H$ be the set of double cosets of *H* in *G*. A double coset HgH for $g \in G$ is called *involutive* if there is a $w \in G$ with $w^2 = 1$ such that HwH = HgH. When all of the double cosets of a finite subgroup *H* in a group *G* are involutive, then the double coset algebra $\mathbb{C}[G/\!/H]$ will be commutative. But the converse is not true in general. In this talk I will review the proof of Curtis, Iwahori, and Kilmoyer that for a finite Coxeter group *G* and a parabolic subgroup *H* of *G*, $\mathbb{C}[G/\!/H]$ is commutative if and only if every $HgH \in G/\!/H$ is involutive.

We can explore the same problem for infinite affine Coxeter groups. For an affine string Coxeter group G and its maximal parabolic subgroup H_a , Alsairafi and Herman showed all of the double cosets in $G/\!\!/H_a$ can be obtained using the "appending single "a" prefixes" approach, and used it to establish the involutive double cosets property holds in this situation for the groups of type \tilde{C}_2 and \tilde{G}_2 . In this talk we will see how the same approach can be used to show the involutive double cosets property also holds in this situation for the groups of type \tilde{F}_4 and $\tilde{C}_n, (n > 2)$.

