

Automa. ed Insect Irap M

JAKOB CLINTON
JOSHUA PEREZ
ANGELO WALSH

CAMERA

1 INTRO

- Insect density monitoring has historically been done by trapping and counting insects by hand
- The Graduate Research Team implemented a solution to automate this process using computer vision
- We've been tasked with a complete hardware redesign with some additions

2 PROBLEMS

- The previous system consumed more power than it generated
- The microcontroller drew power continuously
- The device was inoperable between 8 pm and 5 am due to lighting

3 METHODS

- The reimagined the power system provides:
- o Improved power regulation to accommodate new and legacy devices
- A hardware timer to manage when power is distributed
- Properly sized storage and generation
- Protection for overcurrent events

4 ADDITIONS

- A variety of new modules were implemented:
- Humidity and Temperature sensing to monitor field conditions
- Light module for night time operations
- GNSS module to handle locational data
- Modular stand assembly to accommodate a variety of crops and insects

5 RESULTS

- Power management allows for continuous operation
- Field condition monitoring
- Nighttime functionality

Able to orient stand in different ways to trap different bugs and aid research

ACKNOWLEDGEMENTS:

- Abdul Bais
- Muhib Ullah
- Doug Wagner
- Chris Yung

COME SEE US IN ED 114