
Alternative Design to Traditional Septic Systems for Ochapowace Nation

Lanzer EJ Cruz, Trisha Mae S. Junco, Ruth Samara Mamani, Marianne Cadenas Manaois Faculty Supervisor: Dr. Stephanie Young External Supervisor: Mr. Deon Hassler

Background

- Located 175 km east of Regina.
- Aim to design three alternatives/retrofits that will meet the objectives communicated by the community.

Problem Statement

- Current septic systems faces downfall in maintenance and efficiency.
- Risks of leakage
- Lack of funding

Objectives

(Google Earth, 2024)

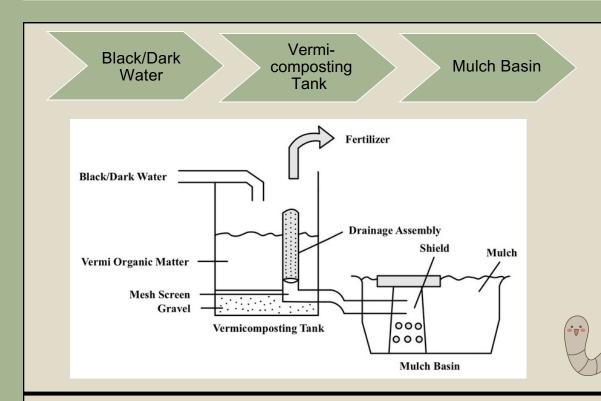
- Low cost
- Low maintenance
- Clean effluent
- Operator-friendly
- Support autonomy

Recommended Design

Alternative 1: Vermicomposting Toilet and Greywater System
*Note: Keeps the current Lagoon

- Produces clean effluent
- Low Maintenance and maintenance cost
- Operator friendly
- Produces useful by-product
- Supports autonomy

Weighted Matrix


Criteria	Weight	Alternative 1	Alternative 2	Alternative 3
Cost	8	8*8=64	3*8=24	6*8=48
Maintenance	10	9*10=90	6*10=60	7*10=70
Operator Friendly	8	8*8=64	8*8=64	6*48=48
Removal Efficiency	9	10*9=90	10*9=90	10*9=90
Time (or HRT)	6	7*6=42	5*6=30	9*6=54
Environmental Impact	7	9.5*7=66.5	5*7=35	7*7=49
Foot Print & Sizing	4	9*4=36	5*4=20	6*4=24
Support for Autonomy	7	6*7=42	4*7=28	3*7=21
Total		<u>494.5</u>	351	404

Design Alternatives

Alternative 1: Vermicomposting Toilet and Greywater System

Alternative 2: Vermicomposting Toilets and Sewage Collection System

Alternative 3: Aerobic Treatment Unit Retrofit

Vermicomposting Toilet

Biodegradation:

- Biochemical Oxygen Demand (BOD): 90%
- Five-day Biochemical Oxygen Demand (BOD5): 98-100%
- Chemical Oxygen Demand (COD): 80-90%,
- Total Dissolved Solids (TDS): 90-92%
- Total Suspended Solids (TSS): 90-95%

Maintenance:

- 3-4 months adding organic materials
- Periodic removal of fertilizer

Greywater System

Biodegradation

- Five-day Biochemical Oxygen Demand (BOD5): 98%
- Chemical Oxygen Demand (COD): 74%
- Total Organic Carbon (TOC): 74%
- Total Phosphorus: 97%
- Total Nitrogen: 19%
- Thermotolerant Fecal Coliforms (TTFF): 99%
- Methylene Blue Active Substances (MBAS): 99%
- Suspended Solid (SS): 55-99.9%

Maintenance:

- 3-5 years dig and replenished mulch
- Periodic removal of obstructions in mulch shield

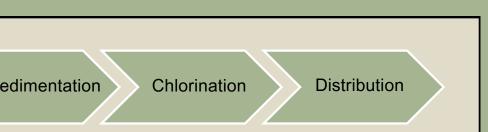
Lagoon Sewage Collection System Expansion

A piping system: 5.82 km piping to service 19 additional buildings

Mulch Basin

CSA-Certified IPEX HDPE Material

Retrofitted Holding Tank


Retrofitted Holding Tank

Greywater

- 6" piping size based on Hazen-Williams Friction Loss and IPEX
 "Pipe-with-the-stripe" Size Determination Calculation.
- Reduce trucking to individual homes, utilize the lagoon capacity, and slowly integrate centralized systems into the community.

Equalization & Pre-Treatment



Aerobic Treatment Unit (ATU) Retrofit Benefits: Higher effluent quality than a septic tank

- Higher effluent quality than a septic tank
 Optimizes the existing septic system by retrofitting
- (holding or septic tank)
 Removes the need for a drain field
 Reduces ammonia, CBOD, BOD5, TSS, nutrients, effluent
- Irrigation reuse for lawns and landscape plants

Final Design

Alternative 1: Vermicomposting Toilet and Greywater System

(Greywater Landscape Design, n.d.)

Cost Estimation: ± 20%

ALT. 1	Capital Cost	CAD 5,991.9 per household	
	Annual Maintenance and Operation	CAD 340 per year	
ALT. 2	Capital Cost	CAD 1,775,100 + CAD 5,991.9	
		per household	
	Annual Maintenance	CAD 23,216.40 + CAD 340	
	and Operation	per year	
ALT. 3	Capital Cost	CAD 11,749 per household	
	Annual Maintenance and Operation	CAD 957 per year	

Conclusion

- Promising results based on Vermicomposting Toilet Literature Review
- Reduction of Wastewater contaminants is guaranteed
- Stated objectives are met

Acknowledgements

Special thanks to our Internal and External Supervisors, Dr. Stephanie Young and Mr. Deon Hassler for their full support and to Ochapowace Nation for being part of this Capstone Project