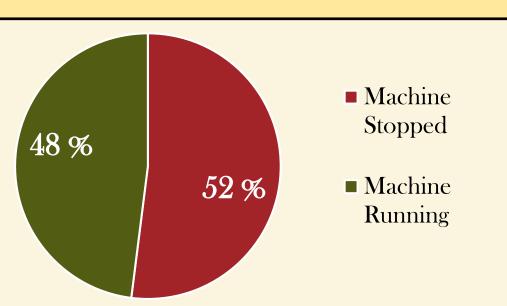


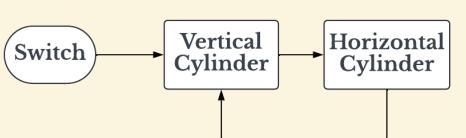
Automated Saw Chip Collection System

Group 10: Arbaz Asif | Yvan Navarro | Geric Sikat


Supervisors: Dr. Liming Dai, PhD, P.Eng | Quinlan Moore, E.I.T

Designed System

Objectives


- o Decrease cleaning time
- o Design for minimal operator input
- Design to reduce ergonomic risk to the operator

Engineering

Vertical Cylinder							
	Calculated (Nm)	Specified (Nm)					
Mx	7.05	29					
My	32.61	73					
Mz	34.94	73					
$rac{7.05}{29} + rac{32.61}{73} + rac{34.94}{73} < 1 ightarrow 1.16 > 1$							

Н	Horizontal Cylinder					
	Calculated (Nm)	Specified (Nm)				
Mx	2.33	16				
My	1.491	39				
Mz	1.795	39				
$\frac{2.33}{16} + \frac{1.49}{39}$		ightarrow~0.23 < 1				

Operator pushes the switch, vertical cylinder moves down, O Vertical cylinder has lower initiating the horizontal cylinder cleans the chips and retracts back, finally the vertical cylinder goes back to home position

- Load Moment Factor (LMF) less than 1, represents a service life of 8000km
- service life (6720 km)
- Total moment (static + dynamic) used to specify suitable cylinders

Safety

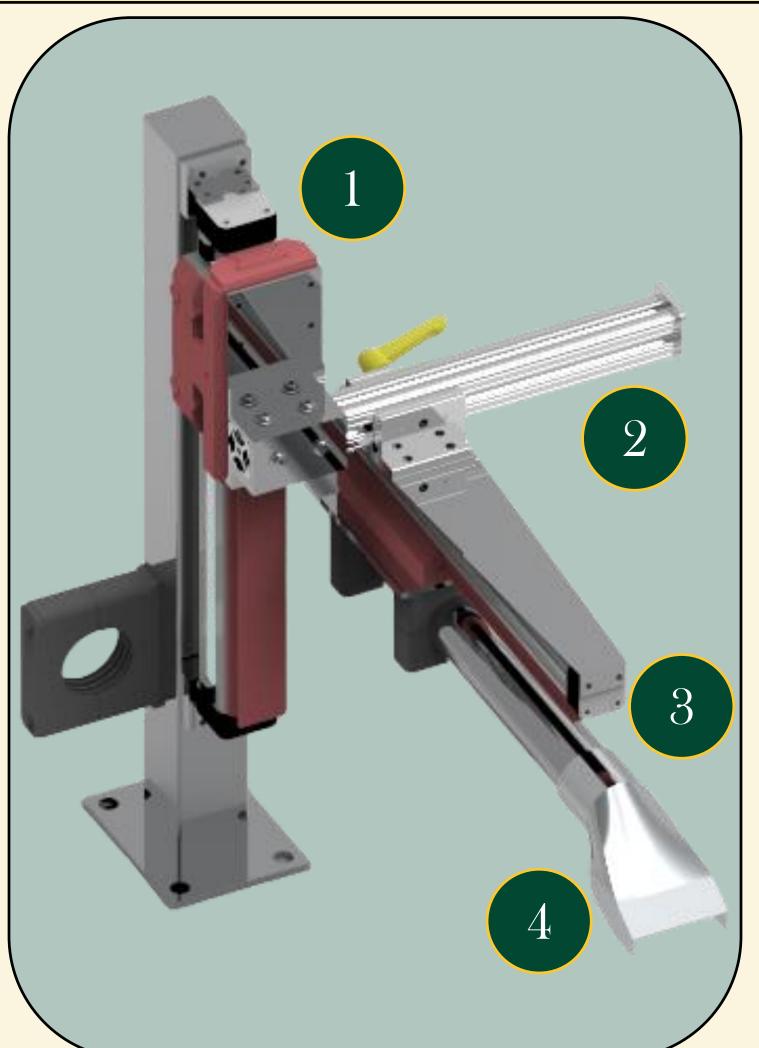
- Administrative Controls
- Employee Training
- Visual Aids
- Engineering Controls
- o Perimeter Guard
- Emergency Stop Button

Hierarchy of Control Elimination Substitution Engineering | Controls

Overview

Background

Varying sized HSS tubes being cut on a vertical saw bed into desired lengths. Operators manually vacuum the chips to remove debris for easier handling in the manufacturing process.


Problem

Manual cleaning of shavings and chips from the tubes causes a production downtime.

Solution

Automated saw chip collection system that involves multi-axis operation and minimizes operator input to vacuum debris after each cut.

Final Design

1) Vertical Cylinder

- o One Motion: Up and Down
- Mounted on the cutting bed
- Holds the rest of the assembly

2) Adjustable Arm

- Equipped with a slider and brake
- Locks the Horizontal Cylinder to predetermined distances

3) Horizontal Cylinder

- o Moves toward and inside the tubes
- o Cylinder carries the vacuum hose and nozzle

4) Nozzle

- Interchangeable for quick maintenance
- o Optimal nozzle design specifically for the application

Design Specifications

- A multi-axis approach with motions in x, y and z directions
- Interchangeable nozzles to accommodate different sized HSS tubes and for maximum cleaning efficiency
- Speed of vertical cylinder (z-axis) 10 in/s
- Speed of horizontal cylinder (x-axis) 5 in/s

Effectiveness

Current System

Downtime per shift	65.	28 mi	nutes		32.8 minutes			
Cleaning time per part	1:	2 seco	seconds		7 seconds			
Cleaning Efficiency	97.54%				93.77%			
% Downtime Reduction		49.75%						
% Efficiency Difference		4.02% (Loss)						
Current vs Designed Process Time (sec)			o Cycle time reduced by 5					
75 Before	70 After	С	seconds/part, resulting in 50% downtime reduction • Daily downtime reduced by 32.48 minutes per shift			action luced		
Proposed Cycle Time								
Down								
Forward + Clean								

Cost Analysis

Cost Benefit Analysis

Total Project Cost **\$8,000**

Reverse

Time (sec)

Production Days - 232 day/year DT Reduction - 125.59 hour/year Cost Benefit(50\$/year) - **\$6,300** / **year**

Pay Back Period → 1.27 years

Cylinders

■ Manufactured Part

\$1,200

■ Purchased Part ■ Welding

■ Assembly/Fabrication ■ Miscellaneous

Cost Break Down