

Impact on Research Capacity

April 28, 2009

Paitoon Tontiwachwuthikul Dean of Engineering Paitoon.tontiwachwuthikul@uregina.ca

Key Infrastructure

Greenhouse Gas Technology Centre

International Test Centre for CO₂ Capture

Energy Informatics Lab

Geofluids Lab

Petroleum Technology Research Centre

ITC

- \$5.2M pilot plant at Boundary Dam Power Plant.
- In-house facilities include \$3.3M pilot plant.
- State-of-the-art monitoring and data acquisition are integrated in both locations.
- \$1.2M fundamental and benchscale equipment, largely furnished with CFI funding.

GHGTC

- \$25 million dollar building that houses ITC & hydrogen production and biofuels research programs.
- This facility will also house two multi-million dollar hydrogen production pilot plants, which are under construction.
- GGTC offers 12,213 square feet of laboratory/research space and 2,586 sq. ft. of office and meeting space.

PTRC

- The U of R leases 5,390 of research/lab space and 4,543 sq. ft. of office space in the PTRC building for the Petroleum Systems Engineering faculty and graduate students.
- Includes space for all of the petroleum-related CFIfunded projects.

Energy Informatics Lab

- PL is Dr. Christine Chan CRC Tier 1
- Collaborates with other groups to develop Artificial Intelligence and Knowledge-based Systems for operation and optimization of energy-related technologies such as CO₂ capture systems.

Geofluids Lab

- PL is Dr. Guoxiang Chi
- Conducts geofluids characterization, materials characterization, and geofluids analysis for CO₂ storage.

IPAC-CO₂

- Announced in 2008
- Major sponsors are Shell and the Government of Saskatchewan at \$5M each
- A collaborative centre for identifying, communicating, and minimizing risks and assessing feasibility of CCS.

Infrastructure Locations

Previous Infrastructure

Existing infrastructure = result of the substantial contributions of CFI and other funding partners.

Prior to 1999:

- •Very little infrastructure for energy research
- •Nominal funding received:

e.g. total value of NSERC equipment grants awarded to PUs of Energy CFI projects was only \$108,042

= 5% of the total investments for infrastructure received from CFI

= 2% of total investments when partner contributions are considered.

Current NSERC funding = \$6.8M

Current total investment in CFI infrastructure vs. NSERC Equipment funding pre-CFI and Post-CFI (as representative of comparative infrastructure funding pre- and post-CFI)

Industry Contributions

- Some industry contributions predate CFI investments
- Value of contributions increased substantially since CFI
- \$80K contributed in 1997 increased to an annual high of over \$2M in 2003 and over \$1M each year thereafter.

Technical & Operational Capacity

Source: Interviews with Project Leaders: ratings are based on the 11 CFI projects implemented prior to 2007; the value of the project is based on CFI funding only (excluding IOF).

Synopsis of pre-CFI equipment

- Before CFI funding:
 - research restricted to fundamental and limited bench-scale in individual laboratory workspace.
 - Little to no state-of-the-art equipment and little to no commercialization capacity.
- Key Infrastructure (GHGTC, ITC, PTRC, etc. did not exist).

Critical Mass

- Critical Mass in Energy requires the following areas of expertise:
 - Sustainable oil and gas production
 > PTRC, Energy Informatics, Geofluids
 - Clean Coal or Coal alternatives
 - ITC, Energy Informatics
 - Alternative energy at least some expertise in:
 - Solar, wind, nuclear, biofuels, biomass
 - GHGTC, Faculty of Engineering and Applied Science

Infrastructure Quality

- "Best in Canada" or "Best in the World" in critical areas of expertise:
 - CFI provided this in carbon capture, CO₂ storage, enhanced oil recovery, energy informatics

Demonstration and Commercialization Capacity

• Pilot plants, industry commercialization partners, patents, IP licensing

Multidisciplinarity

Conclusions

Symbiosis:

 Other major sources of funding, largely government, provided the Key Infrastructure space (i.e. the buildings) while CFI provided vastly improved equipment to furnish the space and support these major initiatives.

Capacity

- The CFI equipment significantly broadened researcher capacity to engage in cutting-edge, multidisciplinary research
- This has enabled us increase faculty and researcher numbers and to attract:
 - Significantly more funding from NSERC and industry
 - Top graduate students
 - Highly qualified faculty

Results

- Critical mass in energy
- Commercial technologies

Thank you!