CS405/805-001, Fall 2020
Computer Graphics

Instructor: Xue Dong Yang
Office: College West Building, Room 308.26
Telephone: 585-4692
Email: xd.yang@uregina.ca

Lecture hours: Monday, Wednesday, and Friday, 14:30 – 15:20
Other time by appointment

Textbook: Selected Journal and Conference Papers, and lecture Notes

Note: This class is a cross-listed class. Part I and II are same for both CS405 and CS805 students. Part III is for CS805 students only.

Grading Scheme for CS405

<table>
<thead>
<tr>
<th>Assignment</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>3 X 10% = 30%</td>
</tr>
<tr>
<td>Midterm</td>
<td>40%</td>
</tr>
<tr>
<td>Project</td>
<td>30%</td>
</tr>
</tbody>
</table>

TOTAL 100%
Instructor’s discretion +/- 5%

Grading Scheme for CS805

<table>
<thead>
<tr>
<th>Assignment</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>3 X 10% = 30%</td>
</tr>
<tr>
<td>Midterm</td>
<td>40%</td>
</tr>
<tr>
<td>Project</td>
<td>20%</td>
</tr>
<tr>
<td>Presentation</td>
<td>10%</td>
</tr>
</tbody>
</table>

TOTAL 100%
Instructor’s discretion +/- 5%
Course Outline:

Part I: Lecture Contents

- **Overview of the Three Generations of Rendering Techniques:**
 - First Generation (60’s-70’s): Polygon scan-converting
 - Second Generation (80’s -): Ray-tracing
 - Third Generation (90’s -): Global Illumination

- **3D viewing transformations:**
 - Overview of coordinate systems in 3D computer graphics
 - Homogeneous coordinates
 - Basic transformation matrices
 - 3D viewing transformation matrix: method I
 - 3D viewing transformation matrix: method II
 - Other transformation matrixes
 - Assignment 1: construction of transformation matrices

- **Ray-Tracing:**
 - Basic illumination models
 - Ray construction
 - Intersection between ray and elementary geometric shapes
 - Overview of acceleration techniques for ray-tracing
 - Assignment 2: Implementation of the basic ray-tracing algorithm

- **Volume Rendering**
 - Shading principle for 3D density field
 - Sampling and interpolation of discrete 3D density data
 - Integration of semi-transparent values along a ray
 - Volume rendering algorithm for discrete 3D density data (CT, MRI, etc)
 - Assignment 3: Implementation of the basic volume rendering algorithm

- **Advanced modeling techniques for complex phenomenon**
 - Particle systems (e.g. water, smoke, etc.)
 - Hypertexture

- **Midterm Exam.**
Part II: Term Project (Both CS405 and CS805)

- Each student is required to do a programming type project.
- Two sample projects will be provided which are extensions of Assignments 2 or 3 respectively.
- Students are encouraged to do a project related to their own thesis research topics.
- There will be a minimum requirement for the scope and technical depth of the project.
- A theoretical type project may be considered upon approval.

Part III: Student Presentation (CS805 Only)

- Each student will give one presentation on a related topic based on one or more journal/conference paper(s).
- A list of papers will be provided. In addition, student may suggest papers outside the list.
- Topic for each student must be pre-approved sufficiently ahead of the presentation.
- To make the marking more uniform and less subjective, a suggested structure, format and marking criteria for presentation will be provided.