PIMS Distinguished Lecture Series

Chi-Kwong Li College of William and Mary

Friday,
November, 17, 2017
3:30 - 4:30 p.m.
Education Building (ED) 314

Geometrical Properties of the (p,q)-Matricial Range

Let $\mathbf{A}=(A_1,\ldots,A_m)$ be an m-tuple of bounded linear operators acting on a Hilbert space \mathcal{H} . In connection to the study of quantum error correction, we consider the joint (p,q)-matricial range $\Lambda_{p,q}(\mathbf{A})$ of \mathbf{A} as the set consisting of $(B_1,\ldots,B_m)\in\mathbf{M}_q^m$, where $I_p\otimes B_j$ is a compression of A_j on a pq-dimensional subspace. This definition covers various kinds of generalized numerical ranges for different values of p,q including

- (1) The classical joint numerical range if (p,q)=(1,1),
- (2) The joint rank p-numerical range when q=1,
- (3) The joint q-matricial range when p = 1.

In this talk, we discuss some recent results concerning the geometrical properties such as the star-shapedness and convexity of the joint (p,q)-matricial range of \mathbf{A} . If $\dim \mathcal{H}$ is infinite, we extend the definition of $\Lambda_{p,q}(\mathbf{A})$ to $\Lambda_{\infty,q}(\mathbf{A})$ consisting of $(B_1,\ldots,B_m)\in \mathbf{M}_q^m$ such that $I_\infty\otimes B_j$ is a compression of A_j on a subspace of \mathcal{H} , and consider the joint essential (p,q)-matricial range

 $\Lambda_{p,q}^{ess}(\mathbf{A}) = \bigcap \{ \mathbf{cl}(\Lambda_{p,q}(A_1 + F_1, \dots, A_m + F_m)) : F_1, \dots, F_m \text{ are compact operators} \}.$

Their geometrical properties will also be discussed.

ematics University of Reginand

