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Majorization

Introduced by R. Muirhead (mathematician, physicist, engineer) in 1903,
developed by Lorenz (1905), an economist interested in inequalities of
wealth and inequalities of income.

Majorization is a basic concept in matrix theory, and has recently become
a useful mathematical tool in quantum information theory, beginning with
work of Nielsen (1999) that linked it with quantum operations described
by local operations and classical communication.
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Majorization: definition

Definition

Let x = (x1, x2, ..., xd), y = (y1, y2, ..., yd) ∈ Rd . We say that x is
majorized by y , written x ≺ y , if

k∑
j=1

x↓j ≤
k∑

j=1

y↓j 1 ≤ k ≤ d , where x↓i ≥ x↓i+1,

with equality when k = d .

If equality does not necessarily hold for k = d , we say that x is
sub-majorized by y and we write x ≺w y , where the w stands for “weak”.
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Majorization: definition

Equivalently: x ≺ y if

k∑
j=1

x↑j ≥
k∑

j=1

y↑j 1 ≤ k ≤ d , where x↑i ≤ x↓i+1,

with equality when k = d . If equality does not necessarily hold for k = d ,
we say that x is super-majorized by y and we write x ≺w y .
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Examples

For d-dimensional vectors,(
1

d
, . . . ,

1

d

)
≺

(
1

d − 1
, . . . ,

1

d − 1
, 0

)
≺ . . .

≺
(

1

2
,

1

2
, 0, . . . , 0

)
≺ (1, 0, . . . , 0).
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T -transforms (“Robin Hood transfers”)

A T -transform is a linear transformation whose matrix representation acts
as the identity on all but 2 matrix components. On those two components
it has the form:

T =

[
t 1− t

1− t t

]
,

where 0 ≤ t ≤ 1.

S. Plosker (Brandon) Majorization and Trumping Friday, September 26, 2014 6 / 40



Majorization: alternate definitions

The following statements are equivalent:

1 x is majorized by y ;

2 x = T1 · · ·Try , where T1, . . . ,Tr are T-transforms and r < d ;

3 x = My for some doubly stochastic matrix M (entries are
probabilities; row sums and column sums are all 1)
i.e. xi =

∑
j Mijyj ∀i
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Majorization: alternate definitions

The following statements are equivalent:

1 x is majorized by y ;

2
∑d

i=1 φ(xi ) ≤
∑d

i=1 φ(yi ) for all continuous convex functions
φ : R→ R;

Note: A function f : Rd → R is Schur-convex if

x ≺ y ⇒ f (x) ≤ f (y).

Ex: f (x) = x log x is convex, so Shannon entropy H(x) = −
∑

i xi log xi (a
measure of uncertainty used in information theory) is Schur-concave. This
yields the following theorem:

Theorem

Let x and y be probability distributions such that x ≺ y. Then
H(x) ≥ H(y).
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Von Neumann entropy

Definition

Let ρ be a density matrix. Then we define the Von Neumann entropy of ρ
as follows S(ρ) = −Tr(ρ log(ρ)).

The Von Neumann entropy of a density matrix is the Shannon entropy of
its eigenvalues. Hence if λρ′ ≺ λρ, then S(ρ′) ≥ S(ρ).
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Majorization: alternate definitions (cont.)

Theorem (Rado’s theorem)

x is majorized by y iff x lies in the convex hull of vectors Py, where P is
any permutation matrix (that is, x is contained in the convex hull of
(yσ(1), . . . , yσ(d)), where σ is any permutation on d elements)
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Random unitary channels

Definition

A quantum channel Φ from B(H) to B(H) is said to be random unitary
channel if there exists a set of nonnegative reals {pi}ki=1 which sum to one

and set of unitaries {Ui}ki=1 such that Φ(ρ) =
∑k

i=1 piU
∗
i ρUi .

Note: {Random unitary channels} ⊆ {Unital quantum channels}
(with equality iff dimension of H is two which is the 1 qubit case).
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Uhlmann

Theorem (Uhlmann)

Let H be a finite-dimensional Hilbert space and let ρ and ρ′ be density
matrices in B(H). Then the following are equivalent:

1 The vector of eigenvalues of ρ′ is majorized by the vector of
eigenvalues of ρ. (i.e. λρ′ ≺ λρ).

2 There exists a random unitary channel Φ : B(H)→ B(H) such that
Φ(ρ) = ρ′

3 There exists a unital quantum channel Ψ : B(H)→ B(H) such that
Ψ(ρ) = ρ′
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Horn

A matrix U = (uij) is orthostochastic if there exists an orthogonal matrix
V = (vij) such that uij = v2

ij . Orthostochastic matrices are necessarily
doubly stochastic. An example of a doubly stochastic matrix that is not
orthostochastic is (must be at least 3× 3):

1

2

1 1 0
1 0 1
0 1 1

 .

Lemma (Horn)

Let x , y ∈ Rn. Then x ≺ y iff there exists an n by n orthostochastic
matrix U such that x = Uy.

Corollary (Schur-Horn)

Let x , y ∈ Rn. Then x ≺ y iff there exists an n by n Hermitian matrix H
with hii = xi and λi (H) = yi for all i .
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LOCC Explained

If two parties, Alice and Bob, can only carry out operations on their local
systems and have a classical communication channel to transmit bits, it is
called LOCC.

local operation : trace decreasing CP map,

ΦA ⊗ ΦB : B(HA ⊗HB)→ B(H′A ⊗H′B)

that acts separately on each component of the tensor product

ΦA ⊗ ΦB = (ΦA ⊗ idB) ◦ (idA⊗ΦB)
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LOCC Explained

We shall call HA Alice’s system and HB Bob’s system in what follows.
Let diag(Md) ⊂Md denote classical algebra of diagonal matrices in some
Md .
Classical communication is mathematically represented by

ΦA : B(HA)→ B(H′A)⊗ diag(Md)

and/or

ΦB : B(HB)⊗ diag(Md)→ B(H′B)

S. Plosker (Brandon) Majorization and Trumping Friday, September 26, 2014 15 / 40



Notation

|ψ〉 ∈ HA ⊗HB is a pure state (unit vector), often identified with its
corresponding rank-one projection |ψ〉〈ψ| ∈ B(HA)⊗ B(HB).
We denote by ρψ ≡ trB(|ψ〉〈ψ|) the state of Alice’s system, and λψ the
vector of eigenvalues of ρψ.
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Schmidt Decomposition

Any pure state |x〉 of a composite system HA ⊗HB may be written in the
form |x〉 =

∑
i

√
λi |iA〉|iB〉, where λi ≥ 0,

∑
i λi = 1, and |iA〉 (|iB〉) form

an orthonormal basis for system HA (HB). Note that ρx has eigenvalues
λi .
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Nielsen’s Theorem

We say that |ψ〉 → |φ〉, read “|ψ〉 transforms to |φ〉” if |ψ〉 can be
transformed into |φ〉 by local operations and potentially unlimited two-way
classical communication.

Theorem (Nielsen, 1999)

We can transform |ψ〉 to |φ〉 using local operations and classical
communication if and only if λψ is majorized by λφ. That is,

|ψ〉 → |φ〉 iff λψ ≺ λφ.
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Physical Meaning

This theorem is significant because any entangled state can be transformed
via LOCC into a state that is less or equally entangled. Thus this theorem
states that |ψ〉 is at least as entangled as |φ〉 if and only if the eigenvalues
of trB(|ψ〉〈ψ|) are majorized by the eigenvalues of trB(|φ〉〈φ|).
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EPR Paradox

Entangled states violate the classical principle of locality—the idea that an
object is directly influenced only by its immediate surroundings.

The easiest way to see evidence of entanglement is to measure one
component of an entangled state. This measurement fixes the value of the
other component of the state, implying non-local communication between
the two parts.

Entanglement can be used as a resource in order to implement quantum
teleportation.
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Example of Entanglement

Electron spin, when measured, can be either of two states:
spin up ↑ or spin down ↓.

In the absence of measurement, electron spin is in a superposition of the
two states ↑ / ↓ (even without entanglement).

Consider an entangled electron pair; suppose the state of one of the
electrons is measured as “spin up”. This measurement fixes the state of
the other electron—it will be “spin down”.

In this sense, even when spatially separated, entangled electron pairs
behave as a single quantum object.
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A Generalization

Theorem (Vidal 1999)

We can transform |ψ〉 to |φ〉 with probability p using local operations and
classical communication if and only if λψ is super-majorized by pλφ. That
is,

|ψ〉 → |φ〉 iff λψ ≺w pλφ
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Trumping

It is often the case that two vectors x and y are incomparable.
Trumping (Jonathan-Plenio, 1999) is a generalization of majorization: it is
sometimes possible to find a unit vector c , referred to as a “catalyst”,
such that x ⊀ y but x ⊗ c ≺ y ⊗ c .

Definition

Let x = (x1, x2, ..., xd), y = (y1, y2, ..., yd) ∈ Rd . We say that x is trumped
by y and write x ≺T y if there exists a unit vector c ∈ Rn with positive
components such that x ⊗ c ≺ y ⊗ c.
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Trumping

Example (Jonathan-Plenio, 1999)

Let x = (0.4, 0.4, 0.1, 0.1) and y = (0.5, 0.25, 0.25, 0). x is not majorized
by y (indeed, 0.4 < 0.5 but 0.4 + 0.4 > 0.5 + 0.25).
If c = (0.6, 0.4), then x ⊗ c = (0.24, 0.24, 0.16, 0.16, 0.06, 0.06, 0.04, 0.04)
and y ⊗ c = (0.30, 0.20, 0.15, 0.15, 0.1, 0.1, 0, 0).
One can check that x ⊗ c is majorized by y ⊗ c , so x is trumped by y .
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Trumping

It was shown (Daftuar-Klimesh, 2001) that the dimension of the catalyst
may be arbitrarily large.

Note that we can assume without loss of generality that at least one of the
vectors x or y has no zero components.

Furthermore, we can effectively compare two vectors of different sizes.
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Aubrun-Nechita

We can consider vectors to be infinite-dimensional by appending 0’s
Let T<∞(y) be the set of all probability vectors x having finite support,
such that x ≺T y .
Let M<∞(y) be the set of all probability vectors x having finite support,
such that x⊗n ≺ y⊗n.
Note Md(y) ⊆ Td(y), where d is the dimension of x .

Theorem (Aubrun-Nechita, 2008)

Let x and y be two probability vectors of finite support. The following are
equivalent:

1 x ∈ T<∞(y);

2 x ∈ M<∞(y);

3 ||x ||p ≤ ||y ||p for all p ≥ 1,

where the closure is wrt the `1 norm.
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Set up for Turgut’s Thm

Define S(x) = −
∑d

i=1 xi log xi , which we recall is the formula for the von
Neumann entropy of a density matrix with eigenvalues xi .

Define Aν(x) =
(

1
d

∑d
i=1 xνi

) 1
ν

for real numbers ν 6= 0 and

A0(x) =
(∏d

i=1 xi

) 1
d

.
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Turgut’s Theorem

Theorem (Turgut, 2007)

For two real d-dimensional vectors x and y with non-negative components
such that x has non-zero elements and the vectors are distinct up to
permutation (i.e. x↑ 6= y↑), the relation x ≺T y is equivalent to the
following three strict inequalities:

1 Aν(x) > Aν(y), ∀ν ∈ (−∞, 1),

2 Aν(x) < Aν(y), ∀ν ∈ (1,∞),

3 S(x) > S(y).
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Klimesh’s Theorem

Klimesh (2004, 2007) establishes a theorem that shows trumping is
equivalent to a series of inequalities for a family of additive Schur-convex
functions. For a d-dimensional probability vector x , let

fr (x) =



ln
∑d

i=1 x r
i (r > 1);∑d

i=1 xi ln xi (r = 1);

− ln
∑d

i=1 x r
i (0 < r < 1);

−
∑d

i=1 ln xi (r = 0);

ln
∑d

i=1 x r
i (r < 0).

If any of the components of x are 0, we take fr (x) =∞ for r ≤ 0.

Theorem (Klimesh, 2004/07)

Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be d-dimensional probability
vectors. Suppose that x and y do not both contain components equal to 0
and that x↑ 6= y↑. Then x ≺T y if and only if fr (x) < fr (y) for all real
numbers r .
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Power Majorization

Power majorization is a more refined notion of majorization.

Definition

Let x and y be vectors of non-negative components. We say that x is
power majorized by y , denoted x �p y , if xp

1 + · · ·+ xp
d ≤ yp

1 + · · ·+ yp
d

for all p ≥ 1, p ≤ 0 and the inequality switches direction when 0 ≤ p ≤ 1.
We define strict power majorization, denoted x ≺p y , to be power
majorization with strict inequality, and equality if and only if p = 0, 1.
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Proposition (Kribs-Pereira-P.)

Power majorization can be expressed in terms of Klimesh’s functionals: Let
x and y be vectors in Rd with positive components. Then x �p y if and
only if fr (x)≤fr (y) for all r ∈ R.

Proposition (Kribs-Pereira-P.)

Let x and y be vectors in Rd with positive components with x ≺p y, then

x ≺T y provided that
∏d

i=1 xi 6=
∏d

i=1 yi and
∏d

i=1 xxi
i 6=

∏d
i=1 y yi

i .
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Some Sets of Interest

Let S(y) = {x ∈ (0,∞)d : x ≺ y}, T (y) = {x ∈ (0,∞)d : x ≺T y}, and
P(y) = {x ∈ (0,∞)d : x �p y}.

While the geometric properties of S(y) are quite well-known; there is less
known about T (y) and even less known about P(y). It is clear that
S(y) ⊆ T (y) ⊆ P(y).

We begin with the following closure relation.

Theorem (Kribs-Pereira-P.)

Let y ∈ Rd all of whose components are positive, then the set
P(y) = T (y).
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We know that T (y) is convex (see, e.g. Daftuar & Klimesh’s work). Since
P(y) = T (y), it follows that P(y) is a convex set.

Thus the set P(y) is a closed convex set, and so it is the convex hull of its
extreme points.

Rado’s theorem (majorization): x ≺ y if and only if (x1, . . . , xd) is
contained in the convex hull of (yσ(1), . . . , yσ(d)), where σ is any
permutation on d elements.
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Theorem (Kribs-Pereira-P.)

Let y ∈ Rd all of whose components are positive and let x ∈ P(y). Then
the following are equivalent:

1 x is an extreme point of P(y).

2 fr (x) = fr (y) for some r ∈ R.

3 Either x is not trumped by y or there exists some d by d permutation
matrix P such that x = Py.
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Examples of Trumping

A lower bound on the dimension of the catalyst was found by Sanders and
Gour (2009) based on Generalised concurrence monotones.
Two states ψ and φ with Schmidt vectors

σ(ψ) =

(
19

351
,

1

13
,

64

351
,

71

351
,

3

13
,

89

351

)
σ(φ) =

(
9

196
,

25

196
,

13

98
,

5

28
,

3

14
,

59

196

)
.

There is no LOCC transformation between these two states (no
majorization); one can verify numerically that there indeed exists a
catalyst; their results show that such a catalyst must be of dimension at
least 3 here.
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Example

A system first considered by Bennett is

1p

1p+1
<

1p + 3p

2p+1
<

1p + 3p + 5p

3p+1
< · · · 1p + 3p + · · ·+ (2n − 1)p

np+1
< · · · (1)

for p > 1, p < 0 and reversed for 0 < p < 1.
This system leads to power majorization: consider e.g. the second
inequality and cross-multiply:

3p + 3p + 3p + 9p + 9p + 9p ≤ 2p + 2p + 6p + 6p + 10p + 10p

(for appropriate p). In other words,
x = (3, 3, 3, 9, 9, 9) �p (2, 2, 6, 6, 10, 10) = y . We can in fact use the
observations above to show that we have x ≺T y . That is, this system
gives us an infinite sequence of pairs of vectors (x , y) where x is trumped
(but not majorized) by y .
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Infinite-Dimensional Majorization

Definition

`+1 consists of all x = {xn}∞n=1 ∈ `1(R) with the property that xn ≥ 0 for
all n ∈ N and exactly one of the sets {n ∈ N : xn > 0} and
{n ∈ N : xn = 0} is finite.

Definition

For any x , y ∈ `+1 , we say that x is majorized by y , written x ≺ y , if

k∑
i=1

x↓i ≤
k∑

i=1

y↓i k ∈ N

and
∞∑
i=1

x↓i =
∞∑
i=1

y↓i .
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Infinite-Dimensional Setting

Definition (Owari et al, 2008)

Let |ψ〉 and |φ〉 be unit vectors (states) in HA ⊗HB . We say that |ψ〉 is
ε-convertible to |φ〉 by LOCC if for any ε > 0, there exists an LOCC
operation Λ satisfying ||Λ(|ψ〉〈ψ|)− |φ〉〈φ|||Tr < ε, where || · ||Tr is the
trace norm.

The concept of ε-convertibility allows for the extension of Nielsen’s
theorem, which gives necessary and sufficient conditions for LOCC
transformations, to the infinite-dimensional setting:

Theorem (Owari et al, 2008)

|ψ〉 is ε-convertible to |φ〉 by LOCC if and only if λ ≺ µ, where λ and µ
are the vectors of Schmidt coefficients of |ψ〉 and |φ〉, respectively.
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Infinite-Dimensional Setting

Nielsen’s result has been extended to vectors in `+1 by way of
ε-convertibility for LOCC by Owari et. al. (2008). We can thus define
infinite-dimensional trumping:

Definition

For any x , y ∈ `+1 , we say that x is trumped by y , written x ≺T y , if there
exists a unit vector c ∈ `+1 with all positive components such that
x ⊗ c ≺ y ⊗ c .

The catalyst c is allowed to have infinite length in this setting, though it
may be the case that it has finite length.
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Questions

It has been shown that the catalyst c may have arbitrary length. That
is, the dimension of c does not depend on x or y , and if we know
x ≺T y , we don’t immediately know the dimension of c. In a
real-world physical application, we may be forced to use only
2-dimensional c . If we require c ∈ R2, can we say something about
all x trumped by y?

Can we characterise MLOCC? (multiple copies of the states, which
allows for LOCC transformation): x⊗n ≺ y⊗n (Note that this implies
trumping with catalyst

c =
1

n
(x⊗n ⊕ x⊗(n−1) ⊗ y ⊕ · · · ⊕ y⊗n)

Can we extend trumping and MLOCC in terms of operators in finite
von Neumann algebras?

Schur-Horn or Rado theorems for trumping/MLOCC/power
majorization in II∞ factors?
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