Karen Meagher

Chair of the Graduate Studies Committee, NSERC Evaluation Group Member

Office: CW 307.5
E-mail: karen.meagher@uregina.ca
Phone: 306-585-4886
Pronoun(s): she/her
Website: https://uregina.ca/~meagherk

Current classes
MATH 328 Introduction to Graph Theory, MATH 827 Graph Theory

Research interests
Combinatorics and algebraic graph theory

Recent Publications

1) Herman, Allen; Joshi, Neha; Meagher, Karen Fusions of the generalized Hamming scheme on a strongly-regular graph. Graphs Combin. 38 (2022), no. 5, Paper No. 150, 34 pp.

2) Alameda, Joseph S.; Kenter, Franklin; Meagher, Karen; Young, Michael An upper bound for the k-power domination number in r-uniform hypergraphs. Discrete Math. 345 (2022), no. 11, Paper No. 113038, 6 pp.

3)  Meagher, Karen; Razafimahatratra, A. Sarobidy. The Erdős-Ko-Rado theorem for 2-pointwise and 2-setwise intersecting permutations. Electron. J. Combin. 28 (2021), no. 4, Paper No. 4.10, 21 pp.

4) Fallat, Shaun; Meagher, Karen; Shirazi, Mahsa N. The Erdős-Ko-Rado theorem for 2-intersecting families of perfect matchings. Algebr. Comb. 4 (2021), no. 4, 575–598.

5)  Meagher, Karen; Razafimahatratra, Andriaherimanana Sarobidy; Spiga, Pablo. On triangles in derangement graphs. J. Combin. Theory Ser. A 180 (2021), 105390, 26 pp.

6)  Adm, Mohammad; Fallat, Shaun; Meagher, Karen; Nasserasr, Shahla; Shirazi, Mahsa N.; Razafimahatratra, A. S. Weakly Hadamard diagonalizable graphs. Linear Algebra Appl. 610 (2021), 86–119.

7)  Meagher, Karen; Sin, Peter. All 2-transitive groups have the EKR-module property. J. Combin. Theory Ser. A 177 (2021), 105322, 21 pp.


1) C. Godsil, K. Meagher, Erdös-Ko-Rado Theorems: Algebraic Approaches. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge. 2015.