CS825 - Image Processing 2021 Spring/Summer Course Outline

Part 1: Lectures

- 1. Chapter 1: Introduction
 - Image v.s. digital image
 - Image analysis v.s. computer graphics
 - Differences between image processing, pattern recognition, and computer vision
 - Sample applications
 - Image analysis systems
 - Popular image processing software systems

2. Chapter 2: Digital Image Fundamentals

- Spatial sampling and image resolution
- Intensity level quantization and perceived smoothness

- Color Fundamentals
- Basic representation of digital images (raw images)
- Popular encoded image formats

3. Chapter 3: Image Enhancement

- Human vision structure
- Characteristics of Human Vision System (HVS)
 - Primary colors
 - o Brightness level adaptation
 - Webber ratios
- Histograms
- Image Intensity Mapping
- Histogram Equalization
- Histogram Specification

4. Chapter 4: Image Analysis – Spatial Domain Techniques

Mathematical fundamentals

- o Inner-products in vector space
- Correlation
- Convolution
- Operators
- Sub-image template matching
- Linear smoothing filters
- 1st derivatives (Gradient) and edge detection
- 2nd derivatives (Zero-crossing) and edge detection
- Scale-space filtering
- Non-linear Filters

5. Chapter 5: Image Analysis – Frequency Domain Techniques

- Mathematical Fundamentals
 - o Inner-products in functional space
 - Base functions
 - Projection of signal onto base functions

- Fourier Transforms in 1D and 2D
- Properties of Fourier Transform
- Fast Fourier Transform (FFT)
- Low-pass and High-pass Filtering

6. Chapter 6: Region Analysis

- Contour Tracing
- Morphological Operations
- Region Contour representations
- Hough Transform and Line Detection
- Image Segmentation
- Region Representations and Properties

7. Chapter 7: Face Detection and Recognition

- Fast face detection
- Principal Component Analysis (PCA)
- Eigen-Face

Part 2: Student Presentations

- Every student will give a presentation to the class approximately 30 minutes long followed by a 10 minutes question period.
- Each presentation should be based on primarily one research article.
- A list of classic research articles will be posted for your consideration.
- You can choose articles outside of the list with my approval.

Part 3: Term Projects

- Every student will do a term project individually.
- Sample projects will be posted for your reference in terms of scope, depth, and level of difficulty.
- You should write a proposal for your project by the end of June for my approval.
- The term project is due on August 15th, 2020.