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Abstract

Multiply sectioned Bayesian networks (MSBNs) pro-
vide a coherent framework for probabilistic reasoning
in cooperative multi-agent distributed interpretation
systems (CMADISs). Previous work on MSBNs fo-
cuses on the sufficiency of MSBNs for representation
and inference with uncertain knowledge in CMADISs.
Since several representation choices were made in the
formation of a MSBN, it appears unclear whether cer-
tain choices were necessary. For example, it is unclear
why a hypertree organization of agents was imposed.

This study focuses on the necessity of MSBNs for rep-
resentation of uncertain knowledge in CMADISs. We
identify a small set of fundamental choices which log-
ically implies a MSBN or some equivalent representa-
tions. We consider privacy of agents to be essential
if we are to allow agents developed by independent
vendors so that vendors’ know-how can be protected.
We found that the privacy of agents plays an impor-
tant role in this necessity analysis. The study provides
insights into the MSBN framework and valuable guid-
ances to multiagent system researchers whether they
are satisfied with the framework or unsatisfied with
the restrictions imposed.

1 Introduction

Multiply sectioned Bayesian networks (MSBNs) pro-
vide a coherent framework for probabilistic reasoning
in cooperative multi-agent distributed interpretation
systems (CMADISs) (15). MSBNs are an extension of
Bayesian networks (BNs) (11). A MSBN consists of
a set of interrelated Bayesian subnets that collectively
define a BN (16). Each subnet encodes an agent’s un-
certain knowledge about a subdomain. Agents are or-
ganized into a hypertree structure such that probabilis-
tic inference can be performed coherently in a modular
and distributed fashion. Previous work by Xiang (15)
establishes the sufficiency of MSBNs for representation
and inference with uncertain knowledge in CMADISs.
Since several technical choices were made in the forma-
tion of MSBN framework, it appears unclear whether

certain choices were necessary. For example, it is un-
clear why a hypertree organization of agents was im-
posed.

In this study, we focus on the necessity of MSBNs for
representation of uncertain knowledge in CMADISs.
We identify the choice points in the formation of MSBN
framework. We shall term some fundamental choices
made in the process as the basic commitments. Given
the basic commitments,; other choices follow logically.
We shall term these choices as secondary commitments,
or simply commitments. When we refer to several com-
mitments as a group, some basic and some secondary,
we shall call them just commitments.

The identification of these basic commitments an-
swers the question “what are the conditions under
which a MSBN or some equivalent is the necessary rep-
resentation?” Tt provides a high-level (vs. the techni-
cal level) description about the applicability of MSBNs
and a valuable guidance to practitioners in CMADISs.

In Section 1, we briefly overview the theory of MS-
BNs taken from (16; 15). Each of the subsequent sec-
tions identifies some basic or secondary commitments
and derives certain aspects of the MSBN framework.
The framework logically follows when all the commit-
ments and their consequences unfold, as summarized
in Section 8.

2 Overview of MSBNs

A BN S is a triplet (N, D, P) where N is a set of do-
main variables; D is a DAG whose nodes are labeled by
elements of N, and P is a joint probability distribution
(jpd) over N. A MSBN M is a collection of Bayesian
subnets that together defines a BN. These subnets are
required to satisfy certain conditions that permit the
construction of distributed inference algorithms. One
of these conditions requires that nodes shared by dif-
ferent subnets form a d-sepset, as defined below.

Let Gy = (Ny, E;) (i = 0,1) be two graphs. The
graph G = (Ng U Ny, Fg U E)) is referred to as the
unton of Gy and G4, denoted by G = Gy U Gy.
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Figure 1: (a) DAGs of an MSBN with each d-sepnode shown with a dotted circle. (b) Hypertree organization of
DAGs in (a). (c) A general hypertree MSDAG (unrelated to (a)).

Definition 1 Let D; = (N;, E;) (i = 0,1) be two
DAGs such that D = DolU Dy s a DAG. The intersec-
tion I = Ny NNy is a d-sepset between Dy and Dy if
for every x € I with its parents m in D, either m C Ny
orm C Ny. Fach ¢ € I 1s called a d-sepnode.

Using the concept of d-separation (11), it has been
shown that when a pair of subnets are 1solated from M,
their d-sepset renders them conditionally independent.
Figure 1 (a) shows three DAGs D; (¢ = 0,1,2) of a
MSBN with the d-sepset between each pair as {a, b, ¢}
although in general, d-sepsets between different pairs
of DAGs may differ.

Just as the structure of a BN is a DAG, the structure
of a MSBN is a multiply sectioned DAG (MSDAG)

with a hypertree organization:

Definition 2 A hypertree MSDAG D = | |, D;, where
each D; 1s a connected DAG, 1s a DAG built by the
following procedure:

Start with an empty graph (no node). Recursively
add a DAG Dk, called a hypernode, to the existing
MSDAG |_|Z 0 ' D; subject to the constraints:

[d-sepset] For each D; (j < k), Lijx = N; NNy is a
d-sepset when the two DAGS are isolated.

[Local covering] There exists D; (i < k) such that,
for each D; (j < k;j # i), we have I, C N;. For
an arbitrarily chosen such D;, I, is the hyperlink
between D; and Dy which are said to be adjacent.

Note that a hypertree MSDAG is a tree where each
node is a hypernode as defined above and each link is a
hyperlink. The DAGs in Figure 1 (a) can be organized
into the trivial hypertree MSDAG in (b), where each
hypernode is labeled by a DAG and each hyperlink
is labeled by a d-sepset. Figure 1 (c) depicts a gen-
eral hypertree MSDAG. Although DAGs of a MSBN
should be organized into a hypertree, each DAG may
be multiply connected, e.g., D;. Moreover, there can
be multiple paths between a pair of nodes in different
DAGs in a hypertree MSDAG. For instance, multiple
paths are formed between k and n after Dy and Dy
are unioned. The local covering condition ensures that
for any undirected cycle across two adjacent DAGs,
both of its two paths are through the corresponding

d-sepset. Together with the d-sepset condition, they
ensure that in a hypertree structured M, each hyper-
link renders the two parts of M that it connects con-
ditionally independent. A MSBN is then defined as
follows:

Definition 3 A MSBN M is a triplet (N, D, P). N =
Ui N; 15 the total universe where each N; is a set
of variables. D = | |, D; (a hypertree MSDAG) is the
structure where nodes of each DAG D; are labeled
by elements of N;. P = [, Pi(N;)/ [ 1, Px(Ix) is the
jpd. Fach P;(N;) is a distribution over N; such that
whenever D; and D; are adjacent in D, the marginal-
izations of Pi(N;) and P;(N;) onto the d-sepset I;; are
identical. Fach Py(Iy) is such a marginal distribution
over a hyperlink of D. Each triplet S; = (N;, Dy, F;) is
called a subnet of M.

Two subnets S; and S; are said to be adjacent if D);
and D; are adjacent.

MSBNs forms a coherent framework for probabilistic
reasoning in CMADISs. Each agent holds its partial
perspective of a large problem domain, accesses a local
evidence source, communicates with other agents in-
frequently, reasons with the local evidence and limited
global evidence, and answers queries or takes actions.
It has been shown that if all agents are cooperative (vs
self-interested), and each pair of adjacent agents are
conditionally independent given their shared variables
and have common initial belief on the shared variables,
then a joint system belief is well defined which is identi-
cal to each agent’s belief within 1ts subdomain and sup-
plemental to the agent’s belief outside the subdomain.
Even though multiple agents may acquire evidence
asynchronously in parallel, the communication oper-
ations of MSBNs ensure that the answers to queries
from each agent are consistent with evidence acquired
in the entire system after each communication. Since
communication is infrequent, the operations also en-
sure that between two successive communications, the
answers to queries for each agent are consistent with all
local evidence gathered so far and are consistent with
all evidence gathered in the entire system up to the
last communication. Therefore; a MSBN can be char-
acterized as one of functionally accurate, cooperative



distributed systems (9). Potential applications include
decision support to cooperative human users in uncer-
tain domains and troubleshooting a complex system
by multiple knowledge based subsystems developed by
independent vendors (15).

In the following sections, we identify major choices
in uncertain knowledge representation in a CMADIS
that lead to a MSBN.

3 Choice on measures of belief

In a CMADIS, agents are given the task to determine
cooperatively what is true in a large uncertain problem
domain. We shall use the terms uncertain knowledge,
belief and uncertainty interchangeably.

Cox (2) demonstrated that the axioms of probability
theory are a necessary consequence of intuitive prop-
erties of measures of belief. As summerized by Horvitz
et al. (4), these properties can be termed as clarity,
scalar continuity, completeness, context dependency,
hypothetical conditioning, complementarity, and con-
sistency.

We assume the seven fundamental properties and
make them as our basic commitments. According to
Cox, we must then accept probabilities or their mono-
tonic transformations as agents’ measures of belief. We
shall term this as our commitment to probability. We
shall use the term coherence to describe any assign-
ment of measures of belief that is consistent with the
probability theory, as we have been up to this point in
the paper.

We consider a problem domain consisting of a to-
tal universe A of variables over which a CMADIS of
n agents Ag, A1, ..., An_1 18 defined. FEach agent A;
has its local knowledge over a subset N; C A, called
the subdomain of the agent. From our commitment
to probability, it follows that this knowledge takes the
form of a probability distribution over N;, denoted by
Pi(N;).

4 Choice on privacy of agents

We assume that for each agent A;, its knowledge over
N; 18 private. The privacy has two levels: At the first
level, variables of N; that are not shared by other
agents are known only to A;. Formally, if agent A;
shares variables N; N N; # ¢ with agent A;, then ele-
ments of N; \ N; are unknown to A;.

At the second level, except the marginal distribu-
tions (marginals) of P;(V;) onto variables shared with
other agents, the exact form of P;(N;) is unknown
to other agents. Formally, if agent A; shares vari-
ables N; N N; # ¢ with agent A4;, then A; only makes
ZN,\Nj P;(N;) known to A; but not P;(N;). We shall

term this as our basic commitment to privacy of agents.

The privacy is essential if we are to allow agents devel-
oped by independent vendors so that vendors’ know-
how can be protected.

We take it granted that in order for two agents to
communicate probabilistic knowledge without jeopar-
dizing their privacy, they must share a subset of com-
mon variables. That is, if agents A; and A; are to com-
municate directly, it must be the case that N;NN; # ¢.
We shall term this as our basic commitment to com-
munication by shared variables.

The paths for direct communication can be repre-
sented graphically as follows: Construct a graph with
n nodes. Each node corresponds to an agent A; and
is labeled by N;. Hence the graph has an one-to-one
mapping between nodes of the graph and the agents
of the CMADIS. For each pair of nodes N; and N;,
connect them by a link labeled by I = N; N N; (called
a separator) if I # ¢. The resultant is a junction graph
(5) whose links represent all potential paths of direct
communication between agents. That is, an agent can
directly communicate with another agent if and only if
there 1s a link between them in the junction graph.

Furthermore, since the knowledge of one agent can
influence the knowledge of another agent through a
third agent, the junction graph also represents all
potential paths of indirect communications between
agents. In a CMADIS, each agent’s knowledge should
potentially be influential in any other agent, directly or
indirectly. Otherwise the system can be split into two
separate systems without affecting the performance of
each. This is equivalent to the condition that there
exists a path between any pair of nodes, which implies
that the junction graph is connected.

From our commitments to probability, to privacy of
agents, and to communication by shared variables, it
also follows that the content of direct communication
between a pair of agents must be a probability distribu-
tion over the common variables. We shall refer to this
distribution as a message and direct communication as
message passing.

5 On the necessity of hypertree

The difficulty of coherent inference in multiply con-
nected (with loops) graphical models of probabilistic
knowledge is well known and many inference algo-
rithms have been proposed to tackle the issue, e.g., (11;
8; 12; 3; 6; 13). Those algorithms that are based on
message passing, e.g., (11; 8; 6; 13), all explore the tree
topology by converting a multiply connected network
into a tree. However, when one searches through the
literature, e.g., (11; 5; 10; 1), no formal arguments can
be found which demonstrate convincingly that mes-
sage passing cannot be made coherent in multiply con-



nected networks. This leaves the question whether it is
impossible to construct a method of coherent message
passing in multiply connected networks or it is possible
bu the method remains to be found. In what follows,
we show that the former is the case.

A junction graph can be multiply connected in gen-
eral. A loop is degenerate if all separators on the loop
are identical (Figure 2 (a)). Otherwise, the loop is non-
degenerate ((b) and (c)). In general, a junction graph
can have both types of loops.
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Figure 2: Junction graphs with nodes shown in ovals
and separators shown in boxes.

5.1 Degenerate loops

We shall refer to a node in a junction graph as a clus-
ter. Clusters in a degenerate loop must be complete
(pairwise connected) since each pair has the identical
intersection. These clusters can be organized into a
star subgraph by arbitrarily selecting one cluster as
the center and removing links between other clusters.
Message passing through a degenerate loop can then
be performed using the star structure coherently' and
efficiently as follows:

If observations are received at a peripheral cluster,
propagation of new belief first from the cluster to the
center and then from the center to all other clusters will
update all clusters in the star. Observations received
at multiple clusters can be propagated to the center,
combined and distributed back to update all clusters
(11). Each agent, either at the center or not, can re-
spond to messages efficiently. If the agent is not at the
center, it sends a message to the center when obser-
vations are received and updates belief when the reply
from the center is received. If the agent 1s at the cen-
ter, it receives messages from other clusters, updates
its own belief and then distributes updated belief in
the reply messages.

Although the same coherence could be achieved us-
ing the original complete structure, the communica-
tion cannot be performed as efficiently as mentioned
above. Now every agent has the same number of mes-
sage paths. No one knows who should assume the role
of center. Either a logical center is selected through

'In fact, the coherence depends on an additional require-
ment of conditional independence to be discussed in Sec-
tion 6.

some voting mechanism (as there exists no physical
center), which after incurring the voting overhead re-
turns to the above star structure, or agents will com-
municate randomly, which in the best case may (or
may never) reach coherent belief after more messages
are sent than using the star structure.

When everything else is the same, we shall prefer a
formalism that is more efficient. We shall term this
as our basic commitment to efficiency. Based on the
above analysis, 1t follows that a star structure is al-
ways more efficient than the complete structure for a
degenerate loop. Hence, we shall insist in using a star
structure to organize clusters in every degenerate loop.

5.2 Nondegenerate loops

We show that in general belief updating in a nonde-
generate loop cannot be performed coherently through
message passing. In what follows, we construct a
CMADIS with a nondegenerate loop where no message
passing can update agents’ belief coherently.

Consider a simple CMADIS of three agents Ay, A
and Ay with Uy = {a,b}, U1 = {a,c} and Uz =
{b,¢,d}, where a, b, ¢, d are binary variables?. Figure 2
(c) shows the corresponding junction graph.

The local knowledge of three agents are Py(a,b),
Pi(a,c) and Pa(b,c,d), respectively. We assume
that their belief are initially consistent, namely, the
marginal distributions satisfy Py(a) = Pi(a), Po(b) =
P5(b), and Py(c) = Pa(c). Since their belief are con-
sistent, message passing cannot change any agent’s be-
lief. We shall refer to this CMADIS as Cmas3. Any
given Py(a,b), Pi(a,c) and Pa(b,c,d) subject to the
above consistency constraint is called an initial knowl-
edge state of Cmas3.

Suppose that agent As subsequently observes d =
dyg. If the agents can update their belief coher-
ently, then their new belief should be Py(a,bld = dy),
Pi(a,cld = do) and Pa(b,c,d|d = dp). For As,
Py(b,c,d|d = dg) can be obtained locally. However,
for Ag and A; to update their belief, they must rely
on communication, namely, the message P2(b|d = dp)
sent by Az to Ag and the message Pa(c|d = dp) sent
by A2 to Al.

Clearly, the new belief of Ay and A, Py(a,bld =
dy) and Pi(a,c|d = dy), should be sensitive to As’s
initial knowledge Ps(b, ¢, d). In other words, everything
else being the same, given different initial knowledge
Py(b,c,d) of Aa, the new belief of Ay and A; should
be different as well. In the following theorem, we show
that this 1s not always the case, which disproves that

2For those who might think this system to be trivial,
we can make each of a,b,c,d a set of variables and our
conclusion can still be drawn by the same argument.



it 1s always possible for agents to update their belief
coherently in a nondegenerate loop.

Theorem 4 There exists an infinite set of initial
knowledge states of Cmas3 such that the following con-
ditions hold:

1. At each state in the set, Py(a,b) is identical and so
are Pi(a,c) and Py(b,c).

2. Py(d]b,c) at each state in the set is distinctive.

3. At each state wn the set, the resultant message
Py(bld = dy) is identical and so is the message
P2(6|d = do)

Before proving the theorem, we give an intuitive in-
terpretation. Condition 1 says that the initial knowl-
edge of Ay and A;, and part of the initial knowledge of
Az (Pa(b, ¢)) remain the same across the states. Con-
dition 2 says that the initial knowledge of As is dif-
ferent across the states since Pa(b, ¢, d) = Pa(dl]b,¢) *
P5(b, ). Note that since Py(b, ¢) remains the same, the
consistency among agents is maintained even though
P5(b,c,d) differs across the states. Condition 3 says
that the difference in the initial knowledge of As can-
not cause different new belief in Ay and A, which is
the conclusion we want to establish.

Proof:

Without losing generality, we assume that all dis-
tributions involved are strictly positive. To simplify
notations, we shall denote the message component

P5(b = bo|ld = dp) by Pa(bo|dg). Tt can be expanded as

Py(boldo) = Pa2(bo, do)/(P2(bo, do) + Pa2(b1,dy))

1 1
Py(by,do) 1+ Py(by,co,do)+Pa2(by,c1,do)
P5(bo,do) P (bo,co,do)+P2(bo,c1,do)

1

1_|_ P5(dolby,co)Pa(bi,co)+Pa(dolby,c1)Pa(bier) ’
P2(d0|bDyCD)P2(bﬂch)+P2(dﬂlbﬂycl)P2(bDycl)

Similarly, the message component P (cg|dp) can be ex-
panded as

1

1_|_ P2(d0|buycl)P2(buycl)+P2(d0|61761)P2(61761) :
P2(dﬂlbDyCD)P2(bDyCD)+P2(d0|blyCD)P2(blyCD)

P2(60|d0) =

We shall use s° to denote a particular initial knowl-
edge state and label an agent’s knowledge at s” by
a superscript (e.g., P9(d|b,c)). We now consider a
different state s' that satisfies Pg(a,b) = P{(a,b),
Pl(a,c) = P)(a,c) and P}(b,c) = PJ(b,c) (condition
1). If agent Ay at s' can generate the identical mes-
sages Pi(bldo) = PJ(bldo) and Pi(c|do) = P3(c|do)
(condition 3), then P.}(d|b,c) must be the solutions of
the following equations:

P3 (b1, co)
Py (bo, co)

P3(do|b1, c1) PP (b1, c1)
P (do|bo, c1)P3 (bo, c1)

d0|b0, Cl)on(bo, Cl) —|— le(d()“)l, Cl)on(bl, Cl)
d0|b0, Co)on(bo, Co) —|— le(d()“)l, Co)on(bl, Co)

on(do“)o, Cl)Pz (bo, Cl) —|— P2 (d0|b1, Cl)Pz (bl, Cl)
(d0|b0,CQ)P0(b0,CQ)—|—P0(d0|b1,(}0) (bl,CQ).

Since P#(d|b, c) has four independent parameters but is
constrained by only two equations, it has infinite num-
ber of solutions (condition 3). Each solution defines an
initial knowledge state of the Cmas3 that satisfies all
conditions in the theorem. ad

In the following, we give an example that further
illustrates the implication of Theorem 4.

Example 5 Let the initial knowledge state s° of
Cmas3 be defined as follows:

ph(ag, bo) = 0.2548  pY(ag,by) = 0.0052
pg(al, bo) = 0.2442 8(&1, 1) 0.4958
pY(ag, co) = 0.0052  pY(ag,e1) = 0.2548
p(f(al, 0) = 0.4958 ?(al, 1) = 0.2442
P(bo, co) = 0.16871  pY(bo, 1) = 0.33029
(b1, co) = 0.33229 pY(by,e1) = 0.16871
pg(d()“)o, Co) = 0.03 pg(d0|b0, Cl) = 0.66
pg(d0|b1, Co) =07 pg(d0|b1, Cl) =0.25

Let the initial knowledge state s' be defined identi-
cally except the following:

(d0|b0,60) = 0.533604 p%(d0|b0,cl) = 0.115431
(d0|b1, Co) =0.14 p%(do“)l, Cl) = 0.66

P
p3

Since pd(ag) = pY(ag) = 0.26, Ay and A; are con-
sistent. Since pJ(bo) = p3(bo) = 0.499, Ag and As are
consistent. Since pY(co) = pJ(co) = 0.501, A; and A,
are consistent.

In both states, after d = dy is observed by As,
its messages are p)(bo|do) = pi(bo|do) = 0.448 and
p3(coldo) = pi(coldo) = 0.477. Hence, Ag and A; will
be unable to update their belief differently.

Next, we illustrate the difference in the new belief
produced by a coherent probabilistic inference. To this
end, we assume the following independence relations
among the variables monitored by the three agents:
Variables b and ¢ are conditionally independent given
a, and a and d are conditionally independent given b
and c¢. Note that these assumptions are fully consis-
tent with agents’ knowledge specified above. Assuming



these relations and assuming that each agent’s knowl-
edge is correct within its subdomain, we can derive the
jpd of the domain as

pla, b, ¢,d) = po(a, b)py(cla)pa(d|b, c).
Using this jpd and coherent probabilistic calculation,
from s%, Ag and A; should update their belief on a to
p°(a1]dy) = 0.666. From s', on the other hand, Ay and
Ay should update their belief on a to p*(a;|dg) = 0.878.

The difference is significant.

From Theorem 4, it follows that in general belief up-
dating cannot be performed coherently through mes-
sage passing in a nondegenerate loop. Since replacing
a degenerate loop by a star structure renders inference
more efficient, and coherent inference precludes non-
degenerate loops, it follows from our commitments to
probability and to efficiency that agents should be or-
ganized into a structure that has no loops. The only
such structure is a tree structure. In other words, some
paths in the junction graph should be disallowed such
that the resultant subgraph is a tree. We shall term
this as our commitment to a hypertree organization.

6 On conditional independent
separators

Given our commitment to hypertree organization, it
follows that separators in the hypertree play an im-
portant role in agents’ communication as each separa-
tor 1s the only information channel between the two
subtrees that it separates. Therefore, each separator
must be chosen such that its distribution (which is the
message passed over the corresponding link) is always
sufficient to convey all the relevant information from
one subtree to the other. Formally, this means that all
variables in one subtree are conditionally independent
of all variables in the other subtree given the separator.

It can be shown formally that when the separator
renders the two subtrees conditionally independent, if
new observations are obtained in one subtree, coherent
belief update in the other subtree can be achieved by
simply passing the updated distribution on the sepa-
rator. On the other hand, if the separator does not
render the two subtrees conditionally independent, be-
lief updating by passing only the separator distribution
will not be coherent in general. We shall term this
as our commitment to conditional independent separa-
tors.

This commitment requires the CMADIS designer to
partition the domain among agents such that intersec-
tions of subdomains form conditional independent sep-
arators in a hypertree organization. It has been shown
(15) that if agents are cooperative, the subdomains are
organized into a hypertree, the links on the hypertree

are conditionally independent separators, and agents’
belief on their separators are consistent, then a unique
joint belief of all agents in the CMADIS exists and can
be expressed as

p(N) = (Hpi(Ni))/(Hpj(Ij)),

where each [; is a separator in the hypertree such that
Aj is one of the two agents with N; D ;.

7 Choice on subdomain representation

Although probability theory follows from the seven
fundamental properties for measures of belief, the tra-
ditional representation using the jpd is impractical (14)
and against our commitment to efficiency. Given a
problem domain of k& variables, the jpd is specified
by O(2*) parameters, which imposes heavy burden to
knowledge acquisition.

To make the representation practical, the jpd must
be specified compactly in terms of distributions over
small subsets of the domain variables. This require-
ment gives rise to the representation of jpd using
Bayesian networks (BNs) (11), decomposable Markov
networks (DMNs) (17), and chain graphs (CGs) (7).
All these representations factorize the jpd into distri-
butions over small subsets of variables by exploring
conditional independence among subsets portrayed by
a graphical model. The jpd is then defined coherently
by these distributions, for example, according to the
chain rule in BNs (11). We shall refer to these compact
representations based on graphical dependence models
as belief networks.

In the previous section, we have already factorized
the jpd according to a hypertree topology. Since each
subdomain may still be large enough to preclude the
representation of p;(N;) as an unstructured distribu-
tion, it then follows that for each subdomain N;, p; (N;)
should itself be structured into a belief network. We
shall focus on the structuring using BNs and term this
as our basic commitment to DAG models. When sub-
domains adjacent in the hypertree are structured into
BNs, they impose constraints to each other through
their separators. Each subdomain is structured into a
DAG. However, when DAGs for different subdomains
are joined together, they may form a directed loop.
This implies that if individual subdomains are struc-
tured into DAGs, the entire domain should be struc-
tured into something like a MSDAG. Now the only gap
to arrive at a MSBN is to show that the separator be-
tween subdomains must be structured as a d-sepset.
This is established in Theorem 6 through the concept
of d-separation (11). Since d-separation captures all
graphically identifiable conditional independencies, the



theorem shows that d-sepset is the necessary and suffi-
cient syntactic condition for conditionally independent
separators.

Theorem 6 Let D; = (N;, E;) (i = 0,1) be two DAGs
such that D = DoU Dy is a DAG. Nog\ N1 and N1\ Ny
are d-separated by I = Ny N Ny off I is a d-sepset.

Proof:

We show only the necessity as the sufficiency has
been shown in (16).

Suppose there exists @ € I with distinct parents y
and z in D such that y € Ny but y € N1, and z € Ny
but z ¢ Np. Note that the condition disqualifies T
from being a d-sepset, and this is the only way that
I may become disqualified. Now y and z are not d-
separated given # and hence Ny \ Ny and Ny \ Ny are
not d-separated by I. a

8 Conclusion

Throughout our analysis, we have made the following
basic commitments:

1. Seven fundamental properties of measures of belief.
2. Privacy of agents.

3. Communication by shared variables.

4. Efficiency in inference.

5. DAG models for subdomain structuring.

From these basic commitments, we have shown that
subdomains controlled by agents should each be rep-
resented as a Bayesian subnet, should be organized
into a hypertree, and should be separated by d-sepsets.
From some simple graphical arguments, it then follows
that the structure of the resultant CMADIS is a MS-
DAG (Definition 2). By further comparison between
the equation in Section 6 and Definition 3, it follows
that the resultant representation is a MSBN. In sum-
mary, we have shown that from these basic commit-
ments, MSBNs or some equivalent formalisms follow
logically as the representation of uncertain knowledge
in CMADISs.

This result provides insight to the MSBN framework
by revealing the fundamental properties of coopera-
tive multiagent uncertain reasoning that are behind
the technical details of the framework. Practitioners
who find these basic commitments satisfactory are as-
sured a representation formalism that delivers what
is possible given these commitments. Researchers who
find the restrictions imposed by MSBNs unsatisfactory
are directed to evaluation and relaxation of these ba-
sic commitments rather than the technical details of

MSBNs.
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