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What Necessitate Multiply Sectioned Bayesian Networks?Y. XiangDepartment of Computer Science, University of ReginaRegina, Saskatchewan, Canada S4S 0A2, yxiang@cs.uregina.caAbstractMultiply sectioned Bayesian networks (MSBNs) pro-vide a coherent framework for probabilistic reasoningin cooperative multi-agent distributed interpretationsystems (CMADISs). Previous work on MSBNs fo-cuses on the su�ciency of MSBNs for representationand inference with uncertain knowledge in CMADISs.Since several representation choices were made in theformation of a MSBN, it appears unclear whether cer-tain choices were necessary. For example, it is unclearwhy a hypertree organization of agents was imposed.This study focuses on the necessity of MSBNs for rep-resentation of uncertain knowledge in CMADISs. Weidentify a small set of fundamental choices which log-ically implies a MSBN or some equivalent representa-tions. We consider privacy of agents to be essentialif we are to allow agents developed by independentvendors so that vendors' know-how can be protected.We found that the privacy of agents plays an impor-tant role in this necessity analysis. The study providesinsights into the MSBN framework and valuable guid-ances to multiagent system researchers whether theyare satis�ed with the framework or unsatis�ed withthe restrictions imposed.1 IntroductionMultiply sectioned Bayesian networks (MSBNs) pro-vide a coherent framework for probabilistic reasoningin cooperative multi-agent distributed interpretationsystems (CMADISs) (15). MSBNs are an extension ofBayesian networks (BNs) (11). A MSBN consists ofa set of interrelated Bayesian subnets that collectivelyde�ne a BN (16). Each subnet encodes an agent's un-certain knowledge about a subdomain. Agents are or-ganized into a hypertree structure such that probabilis-tic inference can be performed coherently in a modularand distributed fashion. Previous work by Xiang (15)establishes the su�ciency of MSBNs for representationand inference with uncertain knowledge in CMADISs.Since several technical choices were made in the forma-tion of MSBN framework, it appears unclear whether

certain choices were necessary. For example, it is un-clear why a hypertree organization of agents was im-posed.In this study, we focus on the necessity of MSBNs forrepresentation of uncertain knowledge in CMADISs.We identify the choice points in the formation of MSBNframework. We shall term some fundamental choicesmade in the process as the basic commitments. Giventhe basic commitments, other choices follow logically.We shall term these choices as secondary commitments,or simply commitments. When we refer to several com-mitments as a group, some basic and some secondary,we shall call them just commitments.The identi�cation of these basic commitments an-swers the question \what are the conditions underwhich a MSBN or some equivalent is the necessary rep-resentation?" It provides a high-level (vs. the techni-cal level) description about the applicability of MSBNsand a valuable guidance to practitioners in CMADISs.In Section 1, we brie
y overview the theory of MS-BNs taken from (16; 15). Each of the subsequent sec-tions identi�es some basic or secondary commitmentsand derives certain aspects of the MSBN framework.The framework logically follows when all the commit-ments and their consequences unfold, as summarizedin Section 8.2 Overview of MSBNsA BN S is a triplet (N;D;P ) where N is a set of do-main variables,D is a DAGwhose nodes are labeled byelements of N , and P is a joint probability distribution(jpd) over N . A MSBN M is a collection of Bayesiansubnets that together de�nes a BN. These subnets arerequired to satisfy certain conditions that permit theconstruction of distributed inference algorithms. Oneof these conditions requires that nodes shared by dif-ferent subnets form a d-sepset, as de�ned below.Let Gi = (Ni; Ei) (i = 0; 1) be two graphs. Thegraph G = (N0 [ N1; E0 [ E1) is referred to as theunion of G0 and G1, denoted by G = G0 tG1.
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DFigure 1: (a) DAGs of an MSBN with each d-sepnode shown with a dotted circle. (b) Hypertree organization ofDAGs in (a). (c) A general hypertree MSDAG (unrelated to (a)).De�nition 1 Let Di = (Ni; Ei) (i = 0; 1) be twoDAGs such that D = D0tD1 is a DAG. The intersec-tion I = N0 \N1 is a d-sepset between D0 and D1 iffor every x 2 I with its parents � in D, either � � N0or � � N1. Each x 2 I is called a d-sepnode.Using the concept of d-separation (11), it has beenshown that when a pair of subnets are isolated fromM ,their d-sepset renders them conditionally independent.Figure 1 (a) shows three DAGs Di (i = 0; 1; 2) of aMSBN with the d-sepset between each pair as fa; b; cgalthough in general, d-sepsets between di�erent pairsof DAGs may di�er.Just as the structure of a BN is a DAG, the structureof a MSBN is a multiply sectioned DAG (MSDAG)with a hypertree organization:De�nition 2 A hypertree MSDAG D = FiDi, whereeach Di is a connected DAG, is a DAG built by thefollowing procedure:Start with an empty graph (no node). Recursivelyadd a DAG Dk, called a hypernode, to the existingMSDAG Fk�1i=0 Di subject to the constraints:[d-sepset] For each Dj (j < k), Ijk = Nj \ Nk is ad-sepset when the two DAGs are isolated.[Local covering] There exists Di (i < k) such that,for each Dj (j < k; j 6= i), we have Ijk � Ni: Foran arbitrarily chosen such Di, Iik is the hyperlinkbetween Di and Dk which are said to be adjacent.Note that a hypertree MSDAG is a tree where eachnode is a hypernode as de�ned above and each link is ahyperlink. The DAGs in Figure 1 (a) can be organizedinto the trivial hypertree MSDAG in (b), where eachhypernode is labeled by a DAG and each hyperlinkis labeled by a d-sepset. Figure 1 (c) depicts a gen-eral hypertree MSDAG. Although DAGs of a MSBNshould be organized into a hypertree, each DAG maybe multiply connected, e.g., D1. Moreover, there canbe multiple paths between a pair of nodes in di�erentDAGs in a hypertree MSDAG. For instance, multiplepaths are formed between k and n after D2 and D0are unioned. The local covering condition ensures thatfor any undirected cycle across two adjacent DAGs,both of its two paths are through the corresponding

d-sepset. Together with the d-sepset condition, theyensure that in a hypertree structured M , each hyper-link renders the two parts of M that it connects con-ditionally independent. A MSBN is then de�ned asfollows:De�nition 3 A MSBN M is a triplet (N ;D;P). N =SiNi is the total universe where each Ni is a setof variables. D = FiDi (a hypertree MSDAG) is thestructure where nodes of each DAG Di are labeledby elements of Ni. P = Qi Pi(Ni)=Qk Pk(Ik) is thejpd. Each Pi(Ni) is a distribution over Ni such thatwhenever Di and Dj are adjacent in D, the marginal-izations of Pi(Ni) and Pj(Nj) onto the d-sepset Iij areidentical. Each Pk(Ik) is such a marginal distributionover a hyperlink of D. Each triplet Si = (Ni; Di; Pi) iscalled a subnet of M .Two subnets Si and Sj are said to be adjacent if Diand Dj are adjacent.MSBNs forms a coherent framework for probabilisticreasoning in CMADISs. Each agent holds its partialperspective of a large problem domain, accesses a localevidence source, communicates with other agents in-frequently, reasons with the local evidence and limitedglobal evidence, and answers queries or takes actions.It has been shown that if all agents are cooperative (vsself-interested), and each pair of adjacent agents areconditionally independent given their shared variablesand have common initial belief on the shared variables,then a joint system belief is well de�ned which is identi-cal to each agent's belief within its subdomain and sup-plemental to the agent's belief outside the subdomain.Even though multiple agents may acquire evidenceasynchronously in parallel, the communication oper-ations of MSBNs ensure that the answers to queriesfrom each agent are consistent with evidence acquiredin the entire system after each communication. Sincecommunication is infrequent, the operations also en-sure that between two successive communications, theanswers to queries for each agent are consistent with alllocal evidence gathered so far and are consistent withall evidence gathered in the entire system up to thelast communication. Therefore, a MSBN can be char-acterized as one of functionally accurate, cooperative



distributed systems (9). Potential applications includedecision support to cooperative human users in uncer-tain domains and troubleshooting a complex systemby multiple knowledge based subsystems developed byindependent vendors (15).In the following sections, we identify major choicesin uncertain knowledge representation in a CMADISthat lead to a MSBN.3 Choice on measures of beliefIn a CMADIS, agents are given the task to determinecooperatively what is true in a large uncertain problemdomain. We shall use the terms uncertain knowledge,belief and uncertainty interchangeably.Cox (2) demonstrated that the axioms of probabilitytheory are a necessary consequence of intuitive prop-erties of measures of belief. As summerized by Horvitzet al. (4), these properties can be termed as clarity,scalar continuity, completeness, context dependency,hypothetical conditioning, complementarity, and con-sistency.We assume the seven fundamental properties andmake them as our basic commitments. According toCox, we must then accept probabilities or their mono-tonic transformations as agents' measures of belief. Weshall term this as our commitment to probability. Weshall use the term coherence to describe any assign-ment of measures of belief that is consistent with theprobability theory, as we have been up to this point inthe paper.We consider a problem domain consisting of a to-tal universe N of variables over which a CMADIS ofn agents A0; A1; :::; An�1 is de�ned. Each agent Aihas its local knowledge over a subset Ni � N , calledthe subdomain of the agent. From our commitmentto probability, it follows that this knowledge takes theform of a probability distribution over Ni, denoted byPi(Ni).4 Choice on privacy of agentsWe assume that for each agent Ai, its knowledge overNi is private. The privacy has two levels: At the �rstlevel, variables of Ni that are not shared by otheragents are known only to Ai. Formally, if agent Ajshares variables Nj \ Ni 6= � with agent Ai, then ele-ments of Ni nNj are unknown to Aj.At the second level, except the marginal distribu-tions (marginals) of Pi(Ni) onto variables shared withother agents, the exact form of Pi(Ni) is unknownto other agents. Formally, if agent Aj shares vari-ables Nj \ Ni 6= � with agent Ai, then Ai only makesPNinNj Pi(Ni) known to Aj but not Pi(Ni). We shallterm this as our basic commitment to privacy of agents.

The privacy is essential if we are to allow agents devel-oped by independent vendors so that vendors' know-how can be protected.We take it granted that in order for two agents tocommunicate probabilistic knowledge without jeopar-dizing their privacy, they must share a subset of com-mon variables. That is, if agents Ai and Aj are to com-municate directly, it must be the case that Ni\Nj 6= �.We shall term this as our basic commitment to com-munication by shared variables.The paths for direct communication can be repre-sented graphically as follows: Construct a graph withn nodes. Each node corresponds to an agent Ai andis labeled by Ni. Hence the graph has an one-to-onemapping between nodes of the graph and the agentsof the CMADIS. For each pair of nodes Ni and Nj ,connect them by a link labeled by I = Ni \Nj (calleda separator) if I 6= �. The resultant is a junction graph(5) whose links represent all potential paths of directcommunication between agents. That is, an agent candirectly communicate with another agent if and only ifthere is a link between them in the junction graph.Furthermore, since the knowledge of one agent canin
uence the knowledge of another agent through athird agent, the junction graph also represents allpotential paths of indirect communications betweenagents. In a CMADIS, each agent's knowledge shouldpotentially be in
uential in any other agent, directly orindirectly. Otherwise the system can be split into twoseparate systems without a�ecting the performance ofeach. This is equivalent to the condition that thereexists a path between any pair of nodes, which impliesthat the junction graph is connected.From our commitments to probability, to privacy ofagents, and to communication by shared variables, italso follows that the content of direct communicationbetween a pair of agents must be a probability distribu-tion over the common variables. We shall refer to thisdistribution as a message and direct communication asmessage passing.5 On the necessity of hypertreeThe di�culty of coherent inference in multiply con-nected (with loops) graphical models of probabilisticknowledge is well known and many inference algo-rithms have been proposed to tackle the issue, e.g., (11;8; 12; 3; 6; 13). Those algorithms that are based onmessage passing, e.g., (11; 8; 6; 13), all explore the treetopology by converting a multiply connected networkinto a tree. However, when one searches through theliterature, e.g., (11; 5; 10; 1), no formal arguments canbe found which demonstrate convincingly that mes-sage passing cannot be made coherent in multiply con-



nected networks. This leaves the question whether it isimpossible to construct a method of coherent messagepassing in multiply connected networks or it is possiblebu the method remains to be found. In what follows,we show that the former is the case.A junction graph can be multiply connected in gen-eral. A loop is degenerate if all separators on the loopare identical (Figure 2 (a)). Otherwise, the loop is non-degenerate ((b) and (c)). In general, a junction graphcan have both types of loops.
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a,b a,bFigure 2: Junction graphs with nodes shown in ovalsand separators shown in boxes.5.1 Degenerate loopsWe shall refer to a node in a junction graph as a clus-ter. Clusters in a degenerate loop must be complete(pairwise connected) since each pair has the identicalintersection. These clusters can be organized into astar subgraph by arbitrarily selecting one cluster asthe center and removing links between other clusters.Message passing through a degenerate loop can thenbe performed using the star structure coherently1 ande�ciently as follows:If observations are received at a peripheral cluster,propagation of new belief �rst from the cluster to thecenter and then from the center to all other clusters willupdate all clusters in the star. Observations receivedat multiple clusters can be propagated to the center,combined and distributed back to update all clusters(11). Each agent, either at the center or not, can re-spond to messages e�ciently. If the agent is not at thecenter, it sends a message to the center when obser-vations are received and updates belief when the replyfrom the center is received. If the agent is at the cen-ter, it receives messages from other clusters, updatesits own belief and then distributes updated belief inthe reply messages.Although the same coherence could be achieved us-ing the original complete structure, the communica-tion cannot be performed as e�ciently as mentionedabove. Now every agent has the same number of mes-sage paths. No one knows who should assume the roleof center. Either a logical center is selected through1In fact, the coherence depends on an additional require-ment of conditional independence to be discussed in Sec-tion 6.

some voting mechanism (as there exists no physicalcenter), which after incurring the voting overhead re-turns to the above star structure, or agents will com-municate randomly, which in the best case may (ormay never) reach coherent belief after more messagesare sent than using the star structure.When everything else is the same, we shall prefer aformalism that is more e�cient. We shall term thisas our basic commitment to e�ciency. Based on theabove analysis, it follows that a star structure is al-ways more e�cient than the complete structure for adegenerate loop. Hence, we shall insist in using a starstructure to organize clusters in every degenerate loop.5.2 Nondegenerate loopsWe show that in general belief updating in a nonde-generate loop cannot be performed coherently throughmessage passing. In what follows, we construct aCMADIS with a nondegenerate loop where no messagepassing can update agents' belief coherently.Consider a simple CMADIS of three agents A0, A1and A2 with U0 = fa; bg, U1 = fa; cg and U2 =fb; c; dg, where a; b; c; d are binary variables2. Figure 2(c) shows the corresponding junction graph.The local knowledge of three agents are P0(a; b),P1(a; c) and P2(b; c; d), respectively. We assumethat their belief are initially consistent, namely, themarginal distributions satisfy P0(a) = P1(a), P0(b) =P2(b), and P1(c) = P2(c). Since their belief are con-sistent, message passing cannot change any agent's be-lief. We shall refer to this CMADIS as Cmas3. Anygiven P0(a; b), P1(a; c) and P2(b; c; d) subject to theabove consistency constraint is called an initial knowl-edge state of Cmas3.Suppose that agent A2 subsequently observes d =d0. If the agents can update their belief coher-ently, then their new belief should be P0(a; bjd = d0),P1(a; cjd = d0) and P2(b; c; djd = d0). For A2,P2(b; c; djd = d0) can be obtained locally. However,for A0 and A1 to update their belief, they must relyon communication, namely, the message P2(bjd = d0)sent by A2 to A0 and the message P2(cjd = d0) sentby A2 to A1.Clearly, the new belief of A0 and A1, P0(a; bjd =d0) and P1(a; cjd = d0), should be sensitive to A2'sinitial knowledge P2(b; c; d). In other words, everythingelse being the same, given di�erent initial knowledgeP2(b; c; d) of A2, the new belief of A0 and A1 shouldbe di�erent as well. In the following theorem, we showthat this is not always the case, which disproves that2For those who might think this system to be trivial,we can make each of a; b; c; d a set of variables and ourconclusion can still be drawn by the same argument.



it is always possible for agents to update their beliefcoherently in a nondegenerate loop.Theorem 4 There exists an in�nite set of initialknowledge states of Cmas3 such that the following con-ditions hold:1. At each state in the set, P0(a; b) is identical and soare P1(a; c) and P2(b; c).2. P2(djb; c) at each state in the set is distinctive.3. At each state in the set, the resultant messageP2(bjd = d0) is identical and so is the messageP2(cjd = d0).Before proving the theorem, we give an intuitive in-terpretation. Condition 1 says that the initial knowl-edge of A0 and A1, and part of the initial knowledge ofA2 (P2(b; c)) remain the same across the states. Con-dition 2 says that the initial knowledge of A2 is dif-ferent across the states since P2(b; c; d) = P2(djb; c) �P2(b; c). Note that since P2(b; c) remains the same, theconsistency among agents is maintained even thoughP2(b; c; d) di�ers across the states. Condition 3 saysthat the di�erence in the initial knowledge of A2 can-not cause di�erent new belief in A0 and A1, which isthe conclusion we want to establish.Proof:Without losing generality, we assume that all dis-tributions involved are strictly positive. To simplifynotations, we shall denote the message componentP2(b = b0jd = d0) by P2(b0jd0). It can be expanded asP2(b0jd0) = P2(b0; d0)=(P2(b0; d0) + P2(b1; d0))= 11 + P2(b1;d0)P2(b0;d0) = 11 + P2(b1;c0;d0)+P2(b1;c1;d0)P2(b0;c0;d0)+P2(b0;c1;d0)= 11 + P2(d0jb1;c0)P2(b1;c0)+P2(d0jb1;c1)P2(b1;c1)P2(d0jb0;c0)P2(b0;c0)+P2(d0jb0;c1)P2(b0;c1) :Similarly, the message component P2(c0jd0) can be ex-panded asP2(c0jd0) = 11 + P2(d0jb0;c1)P2(b0;c1)+P2(d0jb1;c1)P2(b1;c1)P2(d0jb0;c0)P2(b0;c0)+P2(d0jb1;c0)P2(b1;c0) :We shall use s0 to denote a particular initial knowl-edge state and label an agent's knowledge at s0 bya superscript (e.g., P 02 (djb; c)). We now consider adi�erent state s1 that satis�es P 10 (a; b) = P 00 (a; b),P 11 (a; c) = P 01 (a; c) and P 12 (b; c) = P 02 (b; c) (condition1). If agent A2 at s1 can generate the identical mes-sages P 12 (bjd0) = P 02 (bjd0) and P 12 (cjd0) = P 02 (cjd0)(condition 3), then P 12 (djb; c) must be the solutions ofthe following equations:

P 12 (d0jb1; c0)P 02 (b1; c0) + P 12 (d0jb1; c1)P 02 (b1; c1)P 12 (d0jb0; c0)P 02 (b0; c0) + P 12 (d0jb0; c1)P 02 (b0; c1)= P 02 (d0jb1; c0)P 02 (b1; c0) + P 02 (d0jb1; c1)P 02 (b1; c1)P 02 (d0jb0; c0)P 02 (b0; c0) + P 02 (d0jb0; c1)P 02 (b0; c1)andP 12 (d0jb0; c1)P 02 (b0; c1) + P 12 (d0jb1; c1)P 02 (b1; c1)P 12 (d0jb0; c0)P 02 (b0; c0) + P 12 (d0jb1; c0)P 02 (b1; c0)= P 02 (d0jb0; c1)P 02 (b0; c1) + P 02 (d0jb1; c1)P 02 (b1; c1)P 02 (d0jb0; c0)P 02 (b0; c0) + P 02 (d0jb1; c0)P 02 (b1; c0) :Since P 12 (djb; c) has four independent parameters but isconstrained by only two equations, it has in�nite num-ber of solutions (condition 3). Each solution de�nes aninitial knowledge state of the Cmas3 that satis�es allconditions in the theorem. 2In the following, we give an example that furtherillustrates the implication of Theorem 4.Example 5 Let the initial knowledge state s0 ofCmas3 be de�ned as follows:p00(a0; b0) = 0:2548 p00(a0; b1) = 0:0052p00(a1; b0) = 0:2442 p00(a1; b1) = 0:4958p01(a0; c0) = 0:0052 p01(a0; c1) = 0:2548p01(a1; c0) = 0:4958 p01(a1; c1) = 0:2442p02(b0; c0) = 0:16871 p02(b0; c1) = 0:33029p02(b1; c0) = 0:33229 p02(b1; c1) = 0:16871p02(d0jb0; c0) = 0:03 p02(d0jb0; c1) = 0:66p02(d0jb1; c0) = 0:7 p02(d0jb1; c1) = 0:25Let the initial knowledge state s1 be de�ned identi-cally except the following:p12(d0jb0; c0) = 0:533604 p12(d0jb0; c1) = 0:115431p12(d0jb1; c0) = 0:14 p12(d0jb1; c1) = 0:66Since p00(a0) = p01(a0) = 0:26, A0 and A1 are con-sistent. Since p00(b0) = p02(b0) = 0:499, A0 and A2 areconsistent. Since p01(c0) = p02(c0) = 0:501, A1 and A2are consistent.In both states, after d = d0 is observed by A2,its messages are p02(b0jd0) = p12(b0jd0) = 0:448 andp02(c0jd0) = p12(c0jd0) = 0:477. Hence, A0 and A1 willbe unable to update their belief di�erently.Next, we illustrate the di�erence in the new beliefproduced by a coherent probabilistic inference. To thisend, we assume the following independence relationsamong the variables monitored by the three agents:Variables b and c are conditionally independent givena, and a and d are conditionally independent given band c. Note that these assumptions are fully consis-tent with agents' knowledge speci�ed above. Assuming



these relations and assuming that each agent's knowl-edge is correct within its subdomain, we can derive thejpd of the domain asp(a; b; c; d) = p0(a; b)p1(cja)p2(djb; c):Using this jpd and coherent probabilistic calculation,from s0, A0 and A1 should update their belief on a top0(a1jd0) = 0:666. From s1, on the other hand, A0 andA1 should update their belief on a to p1(a1jd0) = 0:878.The di�erence is signi�cant.From Theorem 4, it follows that in general belief up-dating cannot be performed coherently through mes-sage passing in a nondegenerate loop. Since replacinga degenerate loop by a star structure renders inferencemore e�cient, and coherent inference precludes non-degenerate loops, it follows from our commitments toprobability and to e�ciency that agents should be or-ganized into a structure that has no loops. The onlysuch structure is a tree structure. In other words, somepaths in the junction graph should be disallowed suchthat the resultant subgraph is a tree. We shall termthis as our commitment to a hypertree organization.6 On conditional independentseparatorsGiven our commitment to hypertree organization, itfollows that separators in the hypertree play an im-portant role in agents' communication as each separa-tor is the only information channel between the twosubtrees that it separates. Therefore, each separatormust be chosen such that its distribution (which is themessage passed over the corresponding link) is alwayssu�cient to convey all the relevant information fromone subtree to the other. Formally, this means that allvariables in one subtree are conditionally independentof all variables in the other subtree given the separator.It can be shown formally that when the separatorrenders the two subtrees conditionally independent, ifnew observations are obtained in one subtree, coherentbelief update in the other subtree can be achieved bysimply passing the updated distribution on the sepa-rator. On the other hand, if the separator does notrender the two subtrees conditionally independent, be-lief updating by passing only the separator distributionwill not be coherent in general. We shall term thisas our commitment to conditional independent separa-tors.This commitment requires the CMADIS designer topartition the domain among agents such that intersec-tions of subdomains form conditional independent sep-arators in a hypertree organization. It has been shown(15) that if agents are cooperative, the subdomains areorganized into a hypertree, the links on the hypertree

are conditionally independent separators, and agents'belief on their separators are consistent, then a uniquejoint belief of all agents in the CMADIS exists and canbe expressed asp(N ) = (Yi pi(Ni))=(Yj pj(Ij));where each Ij is a separator in the hypertree such thatAj is one of the two agents with Nj � Ij.7 Choice on subdomain representationAlthough probability theory follows from the sevenfundamental properties for measures of belief, the tra-ditional representation using the jpd is impractical (14)and against our commitment to e�ciency. Given aproblem domain of k variables, the jpd is speci�edby O(2k) parameters, which imposes heavy burden toknowledge acquisition.To make the representation practical, the jpd mustbe speci�ed compactly in terms of distributions oversmall subsets of the domain variables. This require-ment gives rise to the representation of jpd usingBayesian networks (BNs) (11), decomposable Markovnetworks (DMNs) (17), and chain graphs (CGs) (7).All these representations factorize the jpd into distri-butions over small subsets of variables by exploringconditional independence among subsets portrayed bya graphical model. The jpd is then de�ned coherentlyby these distributions, for example, according to thechain rule in BNs (11). We shall refer to these compactrepresentations based on graphical dependence modelsas belief networks.In the previous section, we have already factorizedthe jpd according to a hypertree topology. Since eachsubdomain may still be large enough to preclude therepresentation of pi(Ni) as an unstructured distribu-tion, it then follows that for each subdomainNi, pi(Ni)should itself be structured into a belief network. Weshall focus on the structuring using BNs and term thisas our basic commitment to DAG models. When sub-domains adjacent in the hypertree are structured intoBNs, they impose constraints to each other throughtheir separators. Each subdomain is structured into aDAG. However, when DAGs for di�erent subdomainsare joined together, they may form a directed loop.This implies that if individual subdomains are struc-tured into DAGs, the entire domain should be struc-tured into something like a MSDAG. Now the only gapto arrive at a MSBN is to show that the separator be-tween subdomains must be structured as a d-sepset.This is established in Theorem 6 through the conceptof d-separation (11). Since d-separation captures allgraphically identi�able conditional independencies, the



theorem shows that d-sepset is the necessary and su�-cient syntactic condition for conditionally independentseparators.Theorem 6 Let Di = (Ni; Ei) (i = 0; 1) be two DAGssuch that D = D0tD1 is a DAG. N0 nN1 and N1 nN0are d-separated by I = N0 \N1 i� I is a d-sepset.Proof:We show only the necessity as the su�ciency hasbeen shown in (16).Suppose there exists x 2 I with distinct parents yand z in D such that y 2 N0 but y 62 N1, and z 2 N1but z =2 N0. Note that the condition disquali�es Ifrom being a d-sepset, and this is the only way thatI may become disquali�ed. Now y and z are not d-separated given x and hence N0 nN1 and N1 nN0 arenot d-separated by I. 28 ConclusionThroughout our analysis, we have made the followingbasic commitments:1. Seven fundamental properties of measures of belief.2. Privacy of agents.3. Communication by shared variables.4. E�ciency in inference.5. DAG models for subdomain structuring.From these basic commitments, we have shown thatsubdomains controlled by agents should each be rep-resented as a Bayesian subnet, should be organizedinto a hypertree, and should be separated by d-sepsets.From some simple graphical arguments, it then followsthat the structure of the resultant CMADIS is a MS-DAG (De�nition 2). By further comparison betweenthe equation in Section 6 and De�nition 3, it followsthat the resultant representation is a MSBN. In sum-mary, we have shown that from these basic commit-ments, MSBNs or some equivalent formalisms followlogically as the representation of uncertain knowledgein CMADISs.This result provides insight to the MSBN frameworkby revealing the fundamental properties of coopera-tive multiagent uncertain reasoning that are behindthe technical details of the framework. Practitionerswho �nd these basic commitments satisfactory are as-sured a representation formalism that delivers whatis possible given these commitments. Researchers who�nd the restrictions imposed by MSBNs unsatisfactoryare directed to evaluation and relaxation of these ba-sic commitments rather than the technical details ofMSBNs. References[1] E. Castillo, J. Gutierrez, and A. Hadi. Expert Systemsand Probabilistic Network Models. Springer, 1997.
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